Принципиальный недостаток многих отечественных конструкций (в том числе ДВС), заключается в том, что проектанты, предохраняя себя от негативных последствий в процессе испытаний и эксплуатации разработанного ими изделия, в своих расчетах берут коэффициент запаса не 1,10 или 1,20, как это должно быть, а 1,50 или 2,0, иногда более того. Какое значение это имеет для экономики, известно большинству специалистов. В рассматриваемом нами случае массового типа производства это просто недопустимо.
Исходя из предназначения рабочего такта «впуск», необходимо помнить, чем надежнее уплотнение между поршнем и цилиндром, исключающий, какой-либо подсос из картера, тем больше степень разряжения пространства над поршнем, тем активнее происходит заполнение цилиндра расчетным количеством атмосферного воздуха.
В начале движения поршня в нижнее положение, учитывая огромные скорости перемещения поршня, над ним и, соответственно, в верхней поршневой канавке, образуется некое разряженное пространство. «Впуск» – это единственный такт рабочего цикла двигателя, на который влияние газодинамической схемы, представленной на рис. 1, не распространяется. На данном такте газодинамика, в определенной степени, нейтральна, поэтому, опережая события, можно, абстрагируясь от последующих рабочих тактов, по иному подходить к проектированию компрессионных колец, исходя только из задач, вменяемых такту «впуск».
Тем не менее, производя достаточно сложный расчет упругих сил поршневых колец, разработчики не должны забывать, что на всех тактах рабочего цикла двигателя уплотнительное (компрессионное) поршневое кольцо должно выполнять две основные задачи и одно обязательное условие:
уплотнять пространство между поршнем и цилиндром, обеспечивать передачу тепла от перегретой головки поршня охлаждаемому цилиндру, при минимально возможныхмеханических потерях на трение.
Для поршневого кольца, находящегося прижатым к нижней полке поршневой канавки предыдущим тактом, впуск – это время релаксации, одно мгновение. Например, при ходе поршня 80 мм и скорости вращения коленчатого вала 3000 мин>-1, скорость перемещения поршня составляет 6 м/с, на двигателях Формулы – 1 средняя скорость поршня 22,5м/с. В течение чрезвычайно краткого промежутка времени, поршневое кольцо должно принять свое естественное положение относительно поршневой канавки и стенки цилиндра. У технологов, по этому поводу, имеется выражение: поршневое кольцо должно «само установиться» по стенке цилиндра. В процессе движения к нижней мертвой точке (НМТ) за счет трения рабочей поверхности кольца о стенку цилиндра, оно смещается к верхней полке поршневой канавки и прижимается к стенке цилиндра собственными силами упругости кольца.
В этом случае, может быть, стоит воспользоваться рекомендацией отечественного ученого Орлина А. С., памятуя о том, что в те давние времена исследователи очень ответственно относились к публикуемым материалам, поэтому в качестве ориентира можно взять рекомендуемое значение давления кольца на стенки цилиндра 0,05…0,3 МПа (0,5…3 кг/см>2) и более [6]. Одновременно, как показали исследования, выражение ученого «…газы прижимают кольцо к стенке цилиндра» не совсем корректно по отношению к современным поршневым кольцам, ибо не соответствуют действительности. В этом убеждаешься, когда выясняется, что они потеряли свою упругость и были прижаты к нижней полке поршневой канавки превосходящей газодинамической силой F>о.
В технических условиях на изготовление «кольца поршневого компрессионного» двигателя КАМАЗ 740.1004032 записано: «Нагрузка, приложенная по стрелкам К, при сжатии кольца гибкой лентой до зазора в замке, равного зазору в калибре 120 мм, должна быть 2,3…3,1 кгс». Из этого следует, что, несмотря на очевидную разницу в методиках измерения упругости поршневого уплотнительного кольца, величины рекомендуемых значений в учебнике и разработчиков двигателя КАМАЗ, одного порядка.