true


julia> x = typemax(UInt64)

0xffffffffffffffff


julia> x+1

0x0000000000000000


julia> x + 1 == typemin(UInt64)

true


В тех случаях, когда переполнение возможно, рекомендуется производить проверку на цикличное поведение. В противном случае используйте тип BigInt арифметики произвольной точности. Ниже приведен пример поведения при переполнении и как его можно решить с помощью BigInt():


julia> 10^19

–8446744073709551616


julia> BigInt(10)^19

10000000000000000000

Числа с плавающей точкой

Типы чисел с плавающей точкой в Julia:





Числа с плавающей точкой вводятся и выводятся стандартным образом:


julia> 1.0

1.0


julia> 1.

1.0


julia> 0.5

0.5


julia> .5

0.5


julia> -1.23

–1.23


При необходимости можно использовать E-нотацию:


julia> 1e10

1.0e10


julia> 2.5e-4

0.00025


Все результаты из примеров выше имеют тип Float64 (тип по умолчанию). Если вы хотите ввести значение с типом Float32, то необходимо использовать f вместо e следующим образом:


julia> x = 0.5f0

0.5f0


julia> typeof(x)

Float32


julia> 2.5f-4

0.00025f0


Значение с типом Float16:


julia> Float16(4.)

Float16(4.0)


julia> 2*Float16(4.)

Float16(8.0)

Ноль с плавающей точкой

Числа с плавающей точкой имеют два нуля – положительный нуль и отрицательный нуль. Они равны друг другу, но имеют разные двоичные представления, что можно увидеть с помощью функции bitstring(), которая дает буквальное битовое представление примитивного типа:


julia> 0.0 == -0.0

true


julia> bitstring(0.0)

"0000000000000000000000000000000000000000000000000000000000000000"


julia> bitstring(-0.0)

"1000000000000000000000000000000000000000000000000000000000000000"


Когда точности или размерности Float64 недостаточно, можно использовать специальный тип BigFloat:


julia> 2.0^100/4

3.1691265005705735e29


julia> BigFloat(2.0)^100/4

3.16912650057057350374175801344e+29


BigFloat знаковый тип арифметики произвольной точности, не назначаемый автоматически при вводе, а требующий явного объявления для использования.


Функции минимального и максимального значений для типов также применимы:


julia> (typemin(Float16),typemax(Float16))

(-Inf16, Inf16)


julia> (typemin(Float32),typemax(Float32))

(-Inf32, Inf32)


julia> (typemin(Float64),typemax(Float64))

(-Inf, Inf)


Результатом будут специальные значения – отрицательная и положительная бесконечности. Значения чисел превышающих числовой диапазон типа также будут заменены на специальные значения:


julia> 4.2^1000

Inf


julia> -4.2^1000

–Inf

Специальные значения

Существует три определенных стандартных значения с плавающей точкой, которые не соответствуют ни одной точке на линии вещественных чисел:





По стандарту IEEE 754, эти значения с плавающей точкой являются результатами определенных арифметических операций:


julia> 1/0

Inf


julia> -5/0

–Inf


julia> 0.000001/0

Inf


julia> 0/0

NaN


julia> 1/Inf

0.0


julia> 1/-Inf

–0.0


julia> -1/Inf

–0.0


julia> -1/-Inf

0.0


julia> 500 + Inf

Inf


julia> 500 – Inf

–Inf


julia> Inf + Inf

Inf


julia> -Inf -Inf

–Inf


julia> Inf – Inf

NaN


julia> Inf * Inf

Inf


julia> Inf*-Inf

–Inf


julia> -Inf * -Inf

Inf


julia> Inf / Inf

NaN


julia> Inf /-Inf

NaN


julia> -Inf /Inf

NaN


julia> -Inf /-Inf

NaN


julia> 0 * Inf

NaN


julia> 0 *-Inf

NaN

Тип NaN

NaN не равно, не меньше и не больше чего-либо, включая самого себя:


julia> NaN == NaN

false


julia> NaN != NaN

true


julia> NaN < NaN

false


julia> NaN > NaN

false


Это может вызвать проблемы, например при работе с массивами:


julia> [1 NaN] == [1 NaN]

false


Функции Julia для работы со специальными значениями:





Функция isequal() считает NaNs равными друг другу:

julia> isequal(NaN, NaN)

true


julia> isequal([1 NaN], [1 NaN])

true


julia> isequal(NaN, NaN32)

true


Функцию isequal() можно также использовать для различения знаковых нулей: