.

Множественные истории ИИ

Написание истории ИИ в нынешней непростой ситуации требует принимать в расчет обширную идеологическую конструкцию: в компаниях Кремниевой долины и высокотехнологичных университетах пропаганда всемогущества ИИ стала нормой и порой даже принимает форму фольклорных представлений о машине, обретающей «сверхчеловеческий разум» и «самосознание». Хорошей иллюстрацией подобных представлений служит апокалиптический нарратив из «Терминатора», согласно которому системы ИИ достигли технологической сингулярности и стали представлять «экзистенциальную угрозу» для выживания человечества на планете – именно это проповедует среди прочих футуролог Ник Бостром[36]. В мифологиях технологической автономии и машинного интеллекта ничего нового нет: они были придуманы в индустриальную эпоху для мистификации роли рабочих и субалтернов[37]. Описывая культ автоматов в эпоху Бэббиджа, Шаффер сформулировал это так: «Чтобы машины казались разумными, требовалось спрятать источник энергии, то есть рабочие руки, которые их поддерживали и направляли»[38].

Помимо спекулятивных нарративов, которые никогда не вдаются в достаточные технические подробности, чтобы прояснить, какие именно алгоритмы реализуют «сверхинтеллект» (super-intelligence), сегодня можно найти множество технических историй ИИ, призванных сделать понятными его сложные алгоритмы[39]. Соответствующие технические обзоры часто выражают ожидания корпораций от «верховного алгоритма»: чтобы он, с чудесной скоростью сжимая данные, решал перцептивные и когнитивные задачи. Именно так неромантично описывается метрика, по которой оценивают «разумность» систем[40]. Эти публикации обычно игнорируют исторический контекст и социальные последствия автоматизации и рисуют линейную историю математических достижений, укрепляя тем самым технологический детерминизм[41]. К техническим историям ИИ следует также отнести когнитивную науку, поскольку она в значительной степени развивалась под влиянием компьютерной науки. Эпохальный двухтомник Маргарет Боден «Ум как машина» (Mind as Machine; 2006) остается, пожалуй, самой подробной историей ИИ как когнитивной науки и показывает сложную генеалогию проекта без какого-либо идеологического пафоса.

Сопротивляясь узкотехническим подходам, все большее число авторов рассматривают социальные последствия ИИ с точки зрения рабочих, сообществ, меньшинств и общества в целом. Эти авторы ставят под вопрос виртуозность алгоритмов, которые якобы «разумны», но по факту усиливают неравенство, усугубляют гендерные и расовые предубеждения и укрепляют новую форму извлечения знаний. Благодаря книгам «Убийственно большие данные» (2016) Кэти О’Нил, «Алгоритмы угнетения» (2018) Сафии Нобл, «Гонка за технологиями» (2019) Рухи Беньямин, «Дискриминация данных» (2021) Уэнди Чан (Цюань Сицин) и другим работам расширяется новая область знания – критические исследования ИИ[42]. В основе этого направления лежат более ранние исследования ИИ, кибернетики и рациональности времен холодной войны, среди которых стоит упомянуть «Искусственное понимание» (1998) Элисон Адамс, «Вычисления и человеческий опыт» (1997) Филипа Агре, «Закрытый мир» (1996) Пола Эдвардса, «Возможности вычислительных машин и человеческий разум» (1976) Джозефа Вайценбаума и статью Хьюберта Дрейфуса «Алхимия и искусственный интеллект» (1965) для корпорации RAND (эту работу обычно считают первой философской критикой ИИ)[43].

Размещая свою книгу внутри растущего корпуса критических работ, я стремлюсь осветить социальную генеалогию ИИ и, что важнее, точку зрения социальных классов, которые развивают ИИ как особое представление о мире и особую эпистемологию. На формирование информационных технологий и ИИ в XX веке воздействовали различные социальные группы и конфигурации власти. Можно сказать, что парадигмы механического мышления (а затем и машинного интеллекта) возникли в разное время и разными способами не на плечах гигантов, а на плечах торговцев, солдат, командиров, бюрократов, шпионов, промышленников, менеджеров и рабочих