. Соколиный алтарь следует обращать на восток, знаменуя предстоящий символический полет воссозданного бога к восходящему солнцу – здесь мы видим уникальный пример божественного перевоплощения средствами геометрии.

Агничаяна подробно описана в шульба-сутрах; это посвященное вопросам геометрии дополнение к Ведам записано около 800 года до н. э. в Индии и опирается на гораздо более древнюю устную традицию[70]. Согласно этим текстам риши (духи жизни) создали семь пуруш (космических существ), имеющих форму квадрата; вместе они образовали единое тело, а уже из этой простой конфигурации возникло сложносоставное тело Праджапати[71]. Шульба-сутры учат строить алтари определенных геометрических форм, чтобы снискать благорасположение богов. Так, говорится, что «тем, кто хочет уничтожить настоящих и будущих врагов, следует построить огненный алтарь в форме ромба»[72]. Помимо религиозного значения ритуал Агничаяна и шульба-сутры обладали функцией передачи важных для общества техник, например умения планировать строительство и увеличивать существующие здания с сохранением первоначальных пропорций[73]. Агничаяна служит примером того, что математическое знание изначально носит социально-материальный характер, а также демонстрирует типичную для кастовой системы иерархию ручного и умственного труда. При сооружении жертвенника рабочие руководствуются правилами, которые традиционно существуют лишь у определенной группы мастеров. Она же и передает эти правила. Ритуалы, подобные Агничаяне, – это не только упражнения в геометрии. Они обучают процедурному знанию, которое не сводится к абстракции и основано на продолжительной «механической» тренировке. Кроме того, они показывают, как религия может побуждать к точности, а духовные упражнения – использоваться как средство трудовой дисциплины[74].

Агничаяна – уникальный артефакт в истории человеческой цивилизации: это самый древний задокументированный ритуал, который практикуется по сей день, хотя из-за сложности и проводится лишь несколько раз в столетие[75]. На протяжении тысячелетий с его помощью передавались и сохранялись сложные парадигмы знания, и благодаря комбинаторному механизму Агничаяны этот ритуал можно определить как первичный пример алгоритмической культуры. Что же позволяет интерпретировать как алгоритм столь древний ритуал? Согласно одному из самых распространенных в компьютерной науке определений, алгоритм, как уже упоминалось, – это конечная процедура пошаговых инструкций для преобразования ввода в вывод вне зависимости от данных и с наилучшим использованием имеющихся ресурсов[76]. Рекурсивные мантры, которые направляют рабочих на строительной площадке огненного алтаря, напоминают правила компьютерной программы: вне зависимости от контекста алгоритм Агничаяны позволяет точно распределить кирпичи и построить Шьеначити. Историки обнаружили, что индийская математика с древних времен носила преимущественно алгоритмический характер. Это означает, что задачи предлагалось решать не с помощью логической демонстрации, а путем пошаговой процедуры[77].

Так, итальянский математик Паоло Целлини утверждает, что ритуал Агничаяны свидетельствует о более сложной технике, чем следование жесткому правилу, а именно – об эвристическом методе пошаговой аппроксимации. Известно, что ведическая математика раньше, чем это произошло у других цивилизаций, познакомилась с бесконечно большими и бесконечно малыми числами. В древних сутрах перемножались огромные позиционные числа индуистской системы счета для охвата необъятных просторов вселенной (мыслительное упражнение, которое невозможно себе представить, например, в аддитивных шумерских, греческих и римских системах счисления). Ведическая математика также была знакома с иррациональными числами, например квадратным корнем, который во многих случаях (например, √2) можно рассчитать только приблизительно. В мантрах шульба-сутр пропеваются самые древние (и доскональные) объяснения вычислительных процедур (например, так называемого вавилонского алгоритма) для приближенного выражения квадратного корня. Процедуры приближения могут показаться громоздкими, слабыми и неточными по сравнению с математическими функциями и геометрическими теоремами, но их роль в истории математики и техники важнее, чем это принято считать. В книге по истории методов постепенного прироста (включая, среди прочего, древний метод гномона) Целлини утверждал, что индуистские методы пошагового приближения эквивалентны современным счетным алгоритмам Лейбница и Ньютона и даже техникам исправления ошибок, которые лежат в основе искусственных нейронных сетей и машинного обучения, составляющих парадигму ИИ (см. главу 9)