}

resource "aws_iam_role_policy_attachment" "attach-service" {

role = "tf_role"

policy_arn = "arn: aws: iam :: aws: policy / AmazonEKSServicePolicy"

}

# Subnet

resource "aws_subnet" "subnet_1" {

vpc_id = "$ {aws_vpc.main.id}"

cidr_block = "10.0.1.0/24"

availability_zone = "us-east-1a"

tags = {

Name = "Main"

}

}

resource "aws_subnet" "subnet_2" {

vpc_id = "$ {aws_vpc.main.id}"

cidr_block = "10.0.2.0/24"

availability_zone = "us-east-1b"

tags = {

Name = "Main"

}

}

resource "aws_vpc" "main" {

cidr_block = "10.0.0.0/16"

}

After 9 minutes 44 seconds, I got a ready-made self-supporting infrastructure for a Kubernetes cluster:

esschtolts @ cloudshell: ~ / terraform / aws (agile-aleph-203917) $ ./../terraform apply -var = "token = AKIAJ4SYCNH2XVSHNN3A" -var = "key = huEWRslEluynCXBspsul3AkKlin1ViR9 + Mo

Now let's delete (it took me 10 minutes 23 seconds):

esschtolts @ cloudshell: ~ / terraform / aws (agile-aleph-203917) $ ./../terraform destroy -var = "token = AKIAJ4SYCNH2XVSHNN3A" -var = "key = huEWRslEluynCXBspsul3AkKlin1ViR9 + Mo

Destroy complete! Resources: 7 destroyed.

Establishing the CI / CD process

Amazon provides (aws.amazon.com/ru/devops/) a wide range of DevOps tools designed in a cloud infrastructure:

* AWS Code Pipeline – the service allows you to create a chain of stages from a set of services in a visual editor, through which the code must go before it goes to production, for example, assembly and testing.

* AWS Code Build – the service provides an auto-scaling build queue, which may be required for compiled programming languages, when adding features or making changes requires a long re-compilation of the entire application, when using one server it becomes a bottleneck when rolling out the changes.

* AWS Code Deploy – Automates deployment and rollback in case of errors.

* AWS CodeStar – the service combines the main features of the previous services.

Setting up remote control

artifact server

aws s3 ls s3: // name_backet aws s3 sync s3: // name_backet name_fonder –exclude * .tmp # files from the bucket will be downloaded to the folder, for example, a website

Now, we need to download the AWS plugin:

esschtolts @ cloudshell: ~ / terraform / aws (agile-aleph-203917) $ ./../terraform init | grep success

Terraform has been successfully initialized!

Now we need to get access to AWS, for that we click on the name of your user in the header of the WEB interface, in addition to My account , the My Security Credentials item will appear , by selecting which, we go to Access Key -> Create New Access Key . Let's create EKS (Elastic Kuberntes Service):

esschtolts @ cloudshell: ~ / terraform / aws (agile-aleph-203917) $ ./../terraform apply

–var = "token = AKIAJ4SYCNH2XVSHNN3A" -var = "key = huEWRslEluynCXBspsul3AkKlinAlR9 + MoU1ViY7"

Delete everything:

$ ../terraform destroy

Creating a cluster in GCP

node pool – combining nodes into a cluster with

resource "google_container_cluster" "primary" {

name = "tf"

location = "us-central1"

$ cat main.tf # configuration state

terraform {

required_version = "> 0.10.0"

}

terraform {

backend "s3" {

bucket = "foo-terraform"

key = "bucket / terraform.tfstate"

region = "us-east-1"

encrypt = "true"

}

}

$ cat cloud.tf # cloud configuration

provider "google" {

token = "$ {var.hcloud_token}"

}

$ cat variables.tf # variables and getting tokens

variable "hcloud_token" {}

$ cat instances.tf # create resources

resource "hcloud_server" "server" {....

$ terraform import aws_acm_certificate.cert arn: aws: acm: eu-central-1: 123456789012: certificate / 7e7a28d2-163f-4b8f-b9cd-822f96c08d6a

$ terraform init # Initialize configs