controlplane $ cat << EOF> readiness.yaml

apiVersion: apps / v1

kind: Deployment

metadata:

name: readiness

spec:

replicas: 2

selector:

matchLabels:

app: readiness

template:

metadata:

labels:

app: readiness

spec:

containers:

– name: readiness

image: python

args:

– / bin / sh

– -c

– sleep 15 && (hostname> health) && python -m http.server 9000

readinessProbe:

exec:

command:

– cat

– / tmp / healthy

initialDelaySeconds: 1

periodSeconds: 5

EOF

controlplane $ kubectl create -f readiness.yaml

deployment.apps / readiness created

controlplane $ kubectl get pods

NAME READY STATUS RESTARTS AGE

readiness-fd8d996dd-cfsdb 0/1 ContainerCreating 0 7s

readiness-fd8d996dd-sj8pl 0/1 ContainerCreating 0 7s

controlplane $ kubectl get pods

NAME READY STATUS RESTARTS AGE

readiness-fd8d996dd-cfsdb 0/1 Running 0 6m29s

readiness-fd8d996dd-sj8pl 0/1 Running 0 6m29s

controlplane $ kubectl exec -it readiness-fd8d996dd-cfsdb – curl localhost: 9000 / health

readiness-fd8d996dd-cfsdb

Our containers work great. Let's add traffic to them:

controlplane $ kubectl expose deploy readiness \

–-type = LoadBalancer \

–-name = readiness \

–-port = 9000 \

–-target-port = 9000

service / readiness exposed

controlplane $ kubectl get svc readiness

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S) AGE

readiness LoadBalancer 10.98.36.51 9000: 32355 / TCP 98s

controlplane $ curl localhost: 9000

controlplane $ for i in {1..5}; do curl $ IP: 9000 / health; done

one

2

3

four

five

Each container has a delay. Let's check what happens if one of the containers is restarted – whether traffic will be redirected to it:

controlplane $ kubectl get pods

NAME READY STATUS RESTARTS AGE

readiness-5dd64c6c79-9vq62 0/1 CrashLoopBackOff 6 15m

readiness-5dd64c6c79-sblvl 0/1 CrashLoopBackOff 6 15m

kubectl exec -it .... -c .... bash -c "rm -f healt"

controlplane $ for i in {1..5}; do echo $ i; done

one

2

3

four

five

controlplane $ kubectl delete deploy readiness

deployment.apps "readiness" deleted

Consider a situation when a container becomes temporarily unavailable for work:

(hostname> health) && (python -m http.server 9000 &) && sleep 60 && rm health && sleep 60 && (hostname> health) sleep 6000

/ bin / sh -c sleep 60 && (python -m http.server 9000 &) && PID = $! && sleep 60 && kill -9 $ PID

By default, the container enters the Running state upon completion of the execution of scripts in the Dockerfile and the launch of the script specified in the CMD instruction if it is overridden in the configuration in the Command section. But, in practice, if we have a database, it still needs to rise (read data and transfer their RAM and other actions), and this can take a lot of time, while it will not respond to connections, and other applications, although read and ready to accept connections will not be able to do so. Also, the container transitions to the Feils state when the main process in the container crashes. In the case of a database, it can endlessly try to execute an incorrect request and will not be able to respond to incoming requests, while the container will not be restarted, since the database daemon (server) did not formally crash. For these cases, two identifiers have been invented: readinessProbe and livenessProbe, which check the transition of the container to a working state or its failure by a custom script or HTTP request.

esschtolts @ cloudshell: ~ / bitrix (essch) $ cat health_check.yaml

apiVersion: v1

kind: Pod

metadata:

labels:

test: healtcheck

name: healtcheck

spec:

containers:

– name: healtcheck

image: alpine: 3.5

args:

– / bin / sh

– -c

– sleep 12; touch / tmp / healthy; sleep 10; rm -rf / tmp / healthy; sleep 60