Многие функциональные группы органических молекул обладают характеристическими колебаниями, которым соответствуют полосы поглощения в определенных областях ИК-спектров. Такие функциональные группы могут быть идентифицированы на основании их полос поглощения.

Все это в совокупности с относительно несложной техникой регистрации делает ИК-спектроскопию быстрым, простым и достаточно достоверным средством идентификации исследуемых веществ (или их отнесения к определенному классу соединений), для чего используются специальные спектральные базы данных и библиотеки [6–8].

Спектроскопия лазерной искры (метод LIBS)

Метод основан на измерениях спектра вторичной эмиссии, возбуждаемого в процессе образования и развития плазмы в результате воздействия на вещество излучением мощного импульсного лазера. При типичных значениях температуры плазмы (10000…20000 °K) вещество атомизуется и ионизуется. В результате этого возбуждаются практически все его атомарные и ионные переходы. На первой стадии этого процесса, совпадающей по времени с действием на плазму излучения лазера, помимо интенсивного сплошного спектра теплового излучения, перекрывающего всю видимую, ультрафиолетовую и ближнюю ИК-область, в спектре лазерной искры присутствуют линии, соответствующие многократно ионизованным атомам, в том числе линии, расположенные в рентгеновской области. После прекращения лазерного импульса на протяжении нескольких микросекунд плазма расширяется и остывает, а затем она излучает спектры нейтральных или/и одно-и двукратно ионизованных атомов. Это излучение может быть зарегистрировано с помощью спектрометра, и по результатам анализа полученных спектров можно определить элементный состав вещества.

Для создания лазерной искры на поверхности исследуемых материалов обычно используют твердотельные Nd: YAG лазеры с модуляцией добротности, имеющие очень короткую (около 10 нс) длительность импульса. За счет использования наносекундных импульсов удается избежать значительной теплопередачи по объему исследуемого образца (имеет место только локальный нагрев в зоне фокусировки пучка лазера) и экранирования лазерного излучения плазмой, формирование которой происходит уже после окончания лазерного импульса.

С помощью метода LIBS можно практически бесконтактно определить элементный состав материала основы памятника и имеющихся на нем покрытий (например, полихромных) или поверхностных загрязнений. Метод позволяет исследовать различные объекты из металла, камня, стекла, керамики, минералов, а также произведения живописи [9–11].

В последнее время интерес к данному методу в реставрации значительно возрос, главным образом в связи с появлением компактных переносных универсальных приборов, способных анализировать любые образцы размером от 10 мкм и определять химические элементы практически с любым атомным номером. Такие анализаторы имеют высокое пространственное разрешение (как по поверхности, так и по глубине), а само исследование может проводиться без какой-либо предварительной пробоподготовки в режиме реального времени [12].

Форма образующихся кратеров позволяет получить дополнительную информацию о составе поверхностного слоя [13].

LIBS является экспрессным, относительно недорогим методом анализа и позволяет регистрировать эмиссионные спектры в течение нескольких секунд. При этом, по сравнению с РФА, имеет более высокую чувствительность и позволяет идентифицировать элементы с малым атомным весом.

Исследования красочных слоев иконы «Св. Николай Мирликийский»

По стилистическим особенностям икону можно отнести к первой половине XIX в. С целью уточнения времени ее создания использовались оба описанных выше спектральных метода.