А что вы думаете по этому поводу?»
Качество ответов нейросетей больше похоже на слабого студента, который просто подбирает похожие слова, но не понимает, о чем говорит. Мог бы я добиться аналогичного поста от нейросети? Чтобы она передала мои смыслы? Да, конечно, но свой пост я написал за 25 минут, а сколько времени у меня ушло бы на попытки добиться такого результата от ИИ? И похоже ли это на действительно думающий интеллект? Да и вообще на Интеллект?
Дело в том, что наше мышление сильно завязано на идеях и образах. То есть в основном в мышлении мы используем подход от общего к частному, мыслим образами, и потом от неких размытых, но понятных нам на бессознательном уровне абстракций приходим к мельчайшим деталям. Параллельно проводим кучу ассоциаций, целиком завязанных опять же на образах. Не зря в человеческой речи так много метафор, сравнений, намеков и переиначиваний слов.
Современные нейросети «думают» совершенно иначе. Им просто неведомы понятия «смысл», «суть», «идея», как и сам процесс размышления. Сгенерированные нейросетью тексты выглядят как логичные не потому, что нейросеть реально понимает, о чем пишет, а потому что она способна вычислить, какие слова чаще всего стоят рядом друг с другом в доступных для ее обучения текстах на заданную вами тему. Чистая математика, основанная на просчете вероятностей.
Однако справедливости ради надо отметить и существенный прогресс в этом направлении. Сейчас разработчики стараются научить ИИ размышлять: он задает сам себе вопросы и, давая ответы, делает выводы. Это имитация внутреннего диалога для повышения качества контента, что свойственно моделям от Open AI конца 2024 года и Yandex GPT 4 Pro RC.
Вот пример ответа модели Yandex GPT 4 Pro RC на запрос «Напиши пост о том, почему Agile бесконечно применять неправильно. Сделай акцент на том, что проведение ретроспектив должно уводить от ситуации неопределенности к ситуации сложных упорядоченных или простых упорядоченных систем».
Ответ Yandex GPT 4 Pro RC: «Почему Agile не всегда работает: как ретроспективы могут помочь перейти от неопределённости к порядку.
Agile – это гибкий подход к управлению проектами, который позволяет быстро адаптироваться к изменениям и улучшать процессы на основе обратной связи. Однако, несмотря на все преимущества, применение Agile без учёта контекста может привести к проблемам. В этом посте мы рассмотрим, почему Agile не стоит применять бесконечно и как ретроспективы помогают перейти от ситуации неопределённости к упорядоченным системам.
Проблемы бесконечного применения Agile
1. Отсутствие чёткой структуры. Agile основан на принципах гибкости и адаптивности, что может привести к отсутствию чёткой структуры и плана действий. Это может затруднить принятие решений и управление рисками.
2. Сложность оценки результатов. Без чёткого плана и критериев оценки результатов сложно определить, насколько успешно продвигается проект. Это может вызвать сомнения в эффективности подхода.
3. Риск потери контроля. Бесконечное применение Agile может привести к потере контроля над проектом. Без чётких границ и ограничений команда может потерять фокус и начать отклоняться от первоначальной цели.
4. Неэффективное использование ресурсов. Если команда постоянно адаптируется к новым условиям, это может привести к неэффективному использованию ресурсов. Вместо того чтобы сосредоточиться на ключевых задачах, команда будет тратить время на постоянные изменения.
5. Снижение мотивации команды. Постоянная адаптация и изменения могут вызвать стресс и усталость у команды. Это может снизить мотивацию и продуктивность.