В данном подразделе мы рассмотрели краткую историю развития компьютеров и искусственного интеллекта, начиная с создания первых электронных машин и заканчивая последними достижениями в области глубокого обучения. Мы увидели, как эволюция компьютерной техники и новые концепции и алгоритмы привели к возникновению и развитию искусственного интеллекта, который в настоящее время играет огромную роль в нашем обществе и проникает во все сферы жизни. Однако развитие искусственного интеллекта никогда не было линейным, и на его пути возникали как заметные успехи, так и разочарования. Взгляд на историю этой области позволяет нам лучше понять современные тенденции и задачи искусственного интеллекта и сформировать представление о его возможном будущем.

1.2. Текущий уровень развития технологии

1.2.1 Современные подходы к разработке ИИ: машинное обучение и глубокое обучение

Машинное обучение: основные принципы

Машинное обучение – это подраздел искусственного интеллекта, который изучает алгоритмы и статистические модели, позволяющие компьютерам учиться и делать предсказания или принимать решения на основе данных. В отличие от классических алгоритмов, которые следуют строго

определенным правилам, алгоритмы машинного обучения «учатся» на основе примеров, представленных в виде обучающей выборки.

Основная идея машинного обучения заключается в том, что компьютерная программа должна быть способна самостоятельно «выработать» правила и закономерности, присущие данным, а затем использовать их для решения новых задач. Машинное обучение включает в себя множество методов и подходов, таких как регрессионный анализ, деревья решений, случайные леса, опорные векторные машины и многое другое.

Глубокое обучение: прорыв в области искусственного интеллекта

Глубокое обучение – это подраздел машинного обучения, который занимается изучением и разработкой нейронных сетей с большим количеством скрытых слоев (глубоких нейронных сетей). Благодаря своей структуре и способности обучения, глубокие нейронные сети способны обрабатывать огромные объемы данных и выявлять сложные закономерности и зависимости, что делает их особенно эффективными в решении задач, связанных с распознаванием образов, обработкой естественного языка и рекомендательными системами.

Одним из важных достоинств глубокого обучения является его способность к автоматическому выделению признаков из данных. Вместо того чтобы полагаться на инженерию признаков и экспертные знания для определения наиболее релевантных переменных, глубокие нейронные сети самостоятельно находят наиболее информативные признаки в процессе обучения. Это позволяет упростить процесс разработки и настройки моделей и обеспечивает высокую производительность в решении сложных задач.

Основные типы глубоких нейронных сетей

Существует множество различных архитектур глубоких нейронных сетей, каждая из которых оптимизирована для решения определенных задач. Ниже приведены некоторые из наиболее популярных и широко используемых архитектур:

Сверточные нейронные сети (CNN) – особенно эффективны в задачах распознавания образов и обработки изображений. Они используют специальные сверточные слои для анализа локальных свойств изображений, таких как границы, углы и текстуры.

Рекуррентные нейронные сети (RNN) – применяются для обработки последовательностей данных, таких как временные ряды, аудиосигналы и текст. Рекуррентные слои сохраняют информацию о предыдущих состояниях и используют ее для прогнозирования следующих состояний.

Сети с долгосрочной краткосрочной памятью (LSTM) и гейтовые рекуррентные единицы (GRU) – разновидности рекуррентных нейронных сетей, особенно эффективные в решении задач с долгосрочными зависимостями между элементами последовательности.