One-Class SVM, с другой стороны, обучает модель только на нормальных данных и затем оценивает, насколько новые наблюдения отклоняются от этой модели. Он стремится построить гиперплоскость, которая разделяет нормальные данные от потенциальных аномалий в пространстве признаков. Таким образом, он оценивает "нормальность" новых наблюдений, и если значение функции решения на новом наблюдении ниже определенного порога, это наблюдение считается аномальным.

Оба этих метода имеют свои преимущества и могут быть эффективными при выявлении аномалий в различных типах данных. Isolation Forest хорошо работает с большими данными и обладает низкой сложностью вычислений, в то время как One-Class SVM может быть эффективным при работе с многомерными данными и наборами данных с низкой плотностью. Выбор конкретного метода зависит от характеристик данных, размера выборки и требований к точности.

Наконец, можно обучать модели на нормальных данных и выявлять аномалии на основе их отклонения от этой модели. Например, можно использовать автоэнкодеры в нейронных сетях для обучения модели на нормальных данных и затем оценивать реконструкцию новых наблюдений. Наблюдения, которые плохо восстанавливаются моделью, могут рассматриваться как аномальные.

Давайте рассмотрим пример использования алгоритма Isolation Forest для выявления аномалий в наборе данных.

Предположим, у нас есть данные о времени выполнения операций в компьютерной сети, и мы хотим выявить аномальные операции, которые могут указывать на наличие сбоев или атак в системе.

Воспользуемся библиотекой scikit-learn для реализации Isolation Forest:

```python

from sklearn.ensemble import IsolationForest

import numpy as np

# Пример данных о времени выполнения операций (в миллисекундах)

data = np.array([100, 120, 105, 110, 115, 130, 150, 200, 300, 400, 1000])

# Преобразуем данные в столбец (необходимо для scikit-learn)

data = data.reshape(-1, 1)

# Создаем модель Isolation Forest

model = IsolationForest(contamination=0.1) # contamination – ожидаемая доля аномалий в данных

# Обучаем модель

model.fit(data)

# Выявляем аномалии

anomalies = model.predict(data)

# Выводим индексы аномальных операций

print("Индексы аномальных операций:", np.where(anomalies == -1)[0])

```

В данном примере мы создаем модель Isolation Forest с ожидаемой долей аномалий в данных 0.1 (10%), обучаем ее на времени выполнения операций, а затем выявляем аномалии. В результате мы получаем индексы аномальных операций, которые превышают пороговое значение, установленное моделью.

Этот пример демонстрирует, как можно использовать Isolation Forest для выявления аномалий в данных времени выполнения операций. Другие методы, такие как One-Class SVM, могут быть использованы аналогичным образом для решения подобных задач.

Для другого примера давайте рассмотрим ситуацию с медицинскими данными. Предположим, у нас есть набор данных о пульсе пациентов, и мы хотим выявить аномальные показатели пульса, которые могут указывать на серьезные медицинские проблемы.

Для этого мы можем использовать алгоритм One-Class SVM для определения аномальных значений пульса.

Рассмотрим пример кода на Python, который реализует это:

```python

from sklearn.svm import OneClassSVM

import numpy as np

# Пример данных о пульсе пациентов (удалены аномальные значения)

pulse_data = np.array([65, 68, 70, 72, 75, 78, 80, 82, 85, 88, 90, 92, 95])

# Добавим аномальные значения

anomalies = np.array([40, 100])

pulse_data_with_anomalies = np.concatenate((pulse_data, anomalies))

# Преобразуем данные в столбец (необходимо для scikit-learn)