4. Обнаружение аномалий: После вычисления Z-оценок мы просматриваем каждое значение роста и определяем, превышает ли его Z-оценка наш установленный порог. Если да, то это значение роста считается аномалией.

Например, если средний рост в нашем наборе данных составляет 170 см, а стандартное отклонение равно 5 см, то любое значение роста менее 155 см или более 185 см будет считаться аномальным при использовании порогового значения Z = 3.

Таким образом, метод Z-оценки может быть применен для обнаружения аномалий в различных наборах данных, включая данные о росте, весе, финансовых показателях и других.

```python

import numpy as np

# Предположим, у нас есть данные о росте людей (в сантиметрах)

heights = np.array([170, 172, 175, 168, 160, 165, 180, 185, 190, 155, 200])

# Вычисляем среднее значение и стандартное отклонение роста

mean_height = np.mean(heights)

std_dev_height = np.std(heights)

# Устанавливаем пороговое значение Z-оценки

threshold = 3

# Вычисляем Z-оценки для каждого значения роста

z_scores = (heights – mean_height) / std_dev_height

# Обнаруживаем аномальные значения роста

anomalies = heights[np.abs(z_scores) > threshold]

print("Аномальные значения роста:", anomalies)

```

Этот код вычисляет Z-оценки для каждого значения роста, а затем определяет аномальные значения, которые превышают установленный порог. В данном примере аномальными считаются значения роста, отклонение от среднего которых превышает 3 стандартных отклонения.

Методы машинного обучения предоставляют эффективные инструменты для обнаружения аномалий, особенно в случаях, когда аномалии не могут быть просто обнаружены с использованием статистических методов. Одним из таких методов является метод опорных векторов (SVM), который использует идею поиска оптимальной гиперплоскости для разделения данных на нормальные и аномальные. SVM строит гиперплоскость таким образом, чтобы максимизировать расстояние между ней и ближайшими точками обоих классов, что позволяет эффективно разделять аномалии от нормальных данных.

Кроме того, методы кластеризации, такие как метод k-средних, могут использоваться для выявления аномалий. В этом случае, аномалии могут быть выделены как объекты, которые не принадлежат ни к одному кластеру или принадлежат к очень маленькому кластеру. Такие объекты могут считаться аномальными, поскольку они существенно отличаются от остальных данных.

Модели машинного обучения обучения с учителем также могут быть применены для обнаружения аномалий, где данные классифицируются на аномальные и нормальные на основе обучающего набора данных с явно определенными метками классов. Это позволяет моделям обнаруживать аномалии, основываясь на обучающем опыте и знаниях о структуре данных.

Таким образом, методы машинного обучения предоставляют гибкие и мощные инструменты для обнаружения аномалий в различных типах данных и условиях, позволяя выявлять аномалии более сложными способами, чем традиционные статистические методы.

Однако важно отметить, что выбор подходящего метода зависит от характеристик данных и конкретной задачи. Некоторые методы могут быть более эффективными для определенных типов аномалий или для данных с определенной структурой, поэтому необходимо провести анализ и эксперименты для выбора оптимального метода для конкретного случая.


6. Задачи обработки естественного языка (NLP)

Задачи обработки естественного языка связаны с анализом и пониманием естественного языка, который может быть на письменной или устной форме. Некоторые методы решения задач NLP включают в себя:

– Модели мешка слов

– Рекуррентные нейронные сети (RNN)