Когда в 1970 году появились компьютеры с большими воспоминаниями, разные исследователи начали создавать знания в приложениях AI. Данной «революцией знаний» было положено начало разработке и внедрению экспертных систем (они были введены Эдвардом Фейгенбаумом), самой первой по-настоящему удачной формы программного обеспечения AI.

Революция знаний также была обусловлена осознанием, что многие простые знания будут нуждаться в огромном количестве других знаний.

1.9 Интеграция подходов. Архитектуры агентов и когнитивные архитектуры.

Поиск и оптимизация, математические инструменты, глубокое обучение

Интеграция подходов. Архитектуры агентов и когнитивные архитектуры



Интеллектуальный агент представляет собой систему, воспринимающую свою окружающую среду и предпринимающую действия, максимизирующие свои шансы на успех. Простейшими интеллектуальными агентами являются программы, решающие конкретные проблемы. Более сложные агенты включают отдельных людей и организации людей (например, фирмы).

Парадигма дает исследователям шанс на изучение изолированных проблем и поиск решений, являющихся поддающимися проверке и полезными, без согласия на единый подход.

Решающим определенную проблему агентом может использоваться любой работающий подход. Некоторые агенты являются символическими и логическими, некоторые из них являются суб символическими нейронными сетями, а другими могут использоваться новые подходы. Парадигма также дает исследователям общий язык для общения с иными областями – например, с теорией принятия решений и экономикой, также использующими понятия абстрактных агентов.

Парадигма интеллектуального агента стала широко распространенной в 1990-х годах.

Исследователи разработали системы для создания интеллектуальных систем из взаимодействующих интеллектуальных агентов в многоагентной системе.

Система с символическими и суб символическими компонентами представляет собой гибридную интеллектуальную систему, а изучение таких систем – интеграцию систем искусственного интеллекта. Иерархическая система управления обеспечивает мост между суб символическим AI на самом низком уровне, реактивным и традиционным символическим AI на самом высоком уровне, где смягченные временные ограничения позволяют обеспечивать моделирование планирования по всему миру.


Поиск и оптимизация, математические инструменты, глубокое обучение



Решение многих из проблем в AI возможно на базе теоретического подхода благодаря интеллектуальному поиску многочисленных возможных решений. Рассуждения могут быть сведены к процедуре поиска. К примеру, рассмотрение логического доказательства возможно в виде поиска пути, ведущего к выводу, где каждый из шагов – применение правил вывода.

Если говорить об алгоритмах планирования, то здесь имеет место применение поиска по деревьям целей и подцелей, попыток нахождения пути к цели, осуществление процесса, называемого анализом средств.

Многими алгоритмами обучения используются алгоритмы поиска на базе оптимизации. Это редкость, когда простых исчерпывающих поисков оказывается достаточно для решения реальных проблем: обычно наблюдается рост пространства поиска до невероятных чисел. В итоге поиск оказывается чрезмерно медленным и не заканчивающимся.

При решении многих проблем прибегают к использованию «эвристики» или «эмпирических правил», определяющих приоритеты выбора в пользу наиболее вероятно достигающих цели решений за минимальное число шагов. Есть методики, где поиск-эвристика приводит к избавлению от вариантов, вряд ли способных привести к цели (это называют «подрезанием дерева поиска»).