Чем больше компании знакомятся с когнитивными инструментами, тем чаще они пытаются экспериментировать, запуская проекты, которые объединяют все три типа ИИ для большей эффективности. Например, один итальянский страховщик разработал «службу когнитивной поддержки» для своего ИТ-отдела. Система взаимодействует с сотрудниками, используя технологию глубокого обучения (из категории когнитивного прогнозирования) для поиска ответов на часто задаваемые вопросы, прецедентов решения проблем и документации. Она использует возможности интеллектуальной маршрутизации в автоматизированных бизнес-процессах для передачи наиболее сложных проблем специалистам, а также умеет обрабатывать пользовательские запросы на естественном, в данном случае итальянском, языке.

Однако, несмотря на быстро растущий опыт работы с когнитивными инструментами, компании сталкиваются со значительными препятствиями на этапах их разработки и внедрения. Опираясь на наше исследование, мы разработали четырехступенчатую структуру для интеграции технологий искусственного интеллекта, которые могут помочь компаниям в достижении их целей, будь то прорывные проекты или оптимизация бизнес-процессов.

1. Понимание технологий

Прежде чем запустить инициативу в области ИИ, компании должны разобраться в том, какие технологии решают какие типы задач, а также понять сильные и слабые стороны каждой из них. Например, основанные на четких правилах экспертные системы и RPA просты и понятны, но не способны к самообучению и улучшению. Глубокое обучение, с другой стороны, отлично подойдет для исследования больших массивов данных, но принципы, по которым оно строит свои модели, почти недоступны человеческому пониманию. Применение таких «черных ящиков» очень проблематично в отраслях с высоким уровнем государственного регулирования, таких как финансовый сектор, в которых регулирующие органы требуют доступа к механизмам принятия решений.

Мы столкнулись с несколькими организациями, которые впустую потратили время и деньги, выбрав технологию, просто подвернувшуюся под руку. Но, если компания хорошо разобралась в этом вопросе, ей будет проще определить, какая из технологий соответствует конкретной потребности, какого поставщика выбрать и как максимально быстро внедрить систему. Чтобы понять технологии, необходимы постоянные исследования и обучение, как правило, в рамках ИТ-отдела или инновационной группы.

В частности, компаниям необходимо привлечь в качестве ключевых сотрудников специалистов по данным, которые обладают навыками в области статистики и обработки больших объемов информации, необходимыми для понимания этих технологий. Основным фактором успеха будет готовность ваших людей учиться. Некоторые обрадуются такой возможности, другие же предпочтут использовать уже имеющиеся инструменты. Старайтесь, чтобы в вашей компании доля первых была выше.

Если у вас нет своего внутреннего научно-аналитического ресурса, вам придется оперативно создать «экосистему» внешних поставщиков услуг ИИ. В дальнейшем, планируя долгосрочные проекты на базе ИИ, не забудьте нанять талантливого специалиста в этой области. В любом случае наличие необходимых ресурсов имеет решающее значение для успеха.

Учитывая дефицит специалистов в области когнитивных технологий, большинству организаций потребуется создать спецотдел – возможно, в одном из центральных подразделений, таких как ИТ или стратегического планирования, – и дать высокоприоритетным проектам компании доступ к его экспертам. По мере роста потребностей и числа специалистов имеет смысл создавать группы, обслуживающие отдельные бизнес-структуры или подразделения, но даже тогда центральная координирующая функция может быть полезна для управления проектами и карьерой.