Растровые модели имеют следующие достоинства:

– растр не требует предварительного знакомства с явлениями;

– данные собираются с равномерно расположенной сети точек, что позволяет в дальнейшем на основе статистических методов обработки получать объективные характеристики исследуемых объектов;

– растровые данные проще для обработки по параллельным алгоритмам;

– некоторые задачи, например создание буферной зоны, проще решать в растровом виде;

– многие растровые модели позволяют вводить векторные данные, в то время как обратная процедура весьма затруднительна для векторных моделей;

– процессы растеризации много проще алгоритмически, чем процессы векторизации, которые зачастую требуют экспертных решений.

Простота машинной реализации операций с растровыми данными находится в противоречии с другой главной их особенностью – значительными затратами памяти, требуемой для их хранения (в сравнении с векторными моделями). Существуют способы сжатия (компрессии) растровых данных.

Недостаток растровых форматов состоит в сложности распознавания объектов. Растр применяется в основном там, где пользователей не интересуют отдельные пространственные объекты, а интересует точка пространства как таковая с ее характеристиками (высотная отметка или глубина, влажность или тип почв и т. п.). Наиболее часто растровые модели применяют при обработке аэрокосмических снимков.

Если атомарной единицей данных при их описании служит элемент «разбиения» территории не прямоугольной (квадратной), а другой правильной геометрической формы – речь идет о другой, отличной от растровой, хотя и формально с нею схожей, регулярно-ячеистой модели данных. Известны примеры регулярных сетей (решеток) с ячейками правильной треугольной, гексагональной или трапециевидной формы.


Рис. 6. Регулярная треугольная решетка


Рис. 7. Сеть равновеликих трапеций на сфере


4.5. Квадротомическая модель

Главный мотив использования и поддержки данной модели программными средствами ГИС – компактность хранения данных по сравнению с растровой моделью.

В основе квадротомического дерева лежит разбиение изображения на вложенные друг в друга квадратные участки, каждый из которых делится рекурсивно на четыре вложенных до достижения некоторого уровня пространственного разрешения.


Рис. 8. Механизм построения квадродерева участка территории с пятью областями


На первом этапе деления исходного участка на четыре квадратных блока и одновременном «ветвлении» квадродерева образуется один неделимый далее элемент № 1 (ему соответствует «лист» дерева на рис. 8 справа) и три «узла» делимых далее квадратов первого уровня иерархии (принимая «корневой» уровень квадратного участка в целом за нулевой). За исключением девяти гомогенных квадратов, на втором иерархическом уровне все остальные элементы делятся далее, пока необходимость дальнейшего деления не будет исчерпана на последнем, четвертом, этапе.

Экономия в сравнении с растровой моделью данных очевидна – область Е на рис. 8. оказалась представленной одним квадратом под номером 33 (а не 16 элементами растра или ячеек регулярной сети), и ее цифровое описание подразумевает лишь формализованное представление структуры квадродерева.

Принимая за нулевой уровень иерархии земную сферу в целом, можно построить глобальное квадротомическое дерево. Уже на 23-м уровне иерархии достигается метровое его разрешение.

4.6. Векторные модели

Векторные модели данных строятся на базе векторов, занимающих часть пространства в отличие от занимающих все пространство растровых моделей. Это определяет их основное преимущество – требование меньшей памяти для хранения и меньших затрат времени на обработку и представление.