Это, конечно, непреднамеренная несправедливость, но последствия ее могут быть чрезвычайно серьезными. Если же общество применит некорректные алгоритмы к таким сферам, как принудительная госпитализация или уголовное судопроизводство, ставки окажутся еще выше.
Решение проблем справедливости и предвзятости при использовании ИИ потребует немалых усилий. Некоторые шаги в этом направлении совершенно очевидны и понятны.
Во-первых, компании, использующие ИИ, обязаны информировать общественность, где и с какой целью используются такие системы.
Во-вторых, инженеров по разработке ИИ следует готовить на основе набора стандартных принципов вроде адаптированной клятвы Гиппократа, которую дают врачи; эти специалисты должны понимать, что их профессия подразумевает элемент этики в продуктах, серьезно меняющих жизнь людей, и, следовательно, они должны поклясться защищать права пользователей.
В-третьих, необходимо ввести тщательное тестирование всех ИИ-продуктов; оно должно быть встроено в инструменты обучения ИИ и заблаговременно предупреждать о моделях, обученных на данных с несправедливым демографическим охватом. В противном случае использование ИИ-продукта должно быть запрещено.
В-четвертых, можно принять новые законы, требующие аудита ИИ. Скажем, если на компанию поступает определенное количество жалоб, ей следует обязать пройти такой аудит (на предмет справедливости, раскрытия информации и защиты конфиденциальности) – точно так же, как фирма подпадает под налоговую проверку, если ее бухгалтерская отчетность выглядит подозрительно.
И, наконец, последняя проблема глубокого обучения – объяснения и обоснования. Люди всегда могут растолковать, почему они приняли то или иное решение – оно основано на в высшей степени конкретном опыте и правилах.
Но решения глубокого обучения базируются на сложных уравнениях с тысячами функций и миллионами параметров. «Резоном» для глубокого обучения, по сути, является многомерное уравнение, полученное на основе больших объемов данных. И вряд ли возможно как следует объяснить его людям – оно слишком сложно. Тем не менее многие ключевые решения ИИ должны сопровождаться объяснением причин – либо по закону, либо потому, что этого ожидают пользователи.
Поэтому в настоящее время проводится множество исследований, направленных на увеличение «прозрачности» ИИ, – либо путем резюмирования его сложной логики, либо посредством введения новых ИИ-алгоритмов, которые изначально проще интерпретировать.
Описанные выше недостатки и ограничения глубокого обучения привели к тому, что в обществе появилось серьезное недоверие к ИИ. Но ведь все новые технологии имели свои недостатки. История показывает, что со временем многие ранние ошибки удается исправить, а технологии – усовершенствовать.
Возьмем для примера предохранитель в любой электрической сети. Он оберегает людей от поражения током, а имущество – от пожара. Или антивирусные программы – они защищают от компьютерных вирусов. Я уверен, со временем появятся технологии и политические решения и для проблем, связанных с негативным влиянием ИИ, с предвзятостью и непрозрачностью его работы.
Но сначала нам придется пойти по стопам Наяны и Сахеджа и сообщить людям о серьезности проблем, а уж затем мобилизовать человечество на поиск их решений.
Глава 2. Боги под масками
И правда, и утро со временем проясняются.
Африканская пословица
Примечание Кай-Фу: В этой истории рассказывается о молодом нигерийском видеопродюсере, которого наняли для создания серьезного дипфейка[22]. Одним из основных направлений ИИ является так называемое компьютерное зрение – оно учит машины «видеть», и недавние прорывы в этой сфере позволяют получать невиданные доселе результаты. Этот рассказ – фантазия о мире будущего, характерной чертой которого стали беспрецедентные высокотехнологические игры в стиле «кошки-мышки» между мошенниками и их разоблачителями; между преступниками и потенциальными жертвами. Можем ли мы избежать такого мира, в котором все визуальные линии размыты и нечетки? Я исследую этот вопрос в своем комментарии: я опишу недавние и предстоящие открытия в области компьютерного зрения, биометрии и безопасности ИИ – трех технологических сферах, которые позволяют создавать подделки-дипфейки и другие подобные технологии.