Есть множество примеров, когда человек не подсказывает, а передает информацию на входной слой и «правильный ответ» – на выходной слой.
Представим, что исследователи хотят, чтобы сеть глубокого обучения отличала фотографии кошек от любых других изображений. Для начала исследователь может подать на входной слой миллионы разных фото, маркированных «кошка» или «не кошка»; при этом на выходном слое метки «кошка» или «не кошка» уже должны быть заданы.
Сеть обучается определять, какие признаки в миллионах изображений наиболее информативны для отделения «кошек» от «не кошек». Это обучение представляет собой математический процесс, настраивающий в сети глубокого обучения миллионы (а иногда и миллиарды) параметров, для того чтобы максимизировать вероятность того, что для изображения кошки на входе будет выдана метка «кошки», а для другого изображения – метка «не кошка». На рисунке ниже вы видите такую нейронную сеть глубокого обучения для «распознавания кошек».
Нейронная сеть глубокого обучения, обученная отличать фото кошек от фотографий, на которых изображено что-то другое
В ходе этого процесса глубокая нейросеть математически обучается (или «тренируется») максимизировать значение «целевой функции». В нашем примере с распознаванием кошки такой целевой функцией является вероятность правильного распознавания «кошка» – «не кошка».
После такой тренировки сеть глубокого обучения, по сути, становится гигантским математическим уравнением; его можно протестировать на изображениях, которых она до этого не видела, и убедиться, что сеть путем «умозаключений» способна определить наличие или отсутствие в этих изображениях кошки.
С появлением глубокого обучения совершенно непрактичные ранее возможности ИИ стали пригодными для применения во многих областях и сферах. На следующей диаграмме наглядно показано, как резко сократилось число ошибок распознавания образов, когда начали использовать технологии глубокого обучения.
Глубокое обучение – это технология универсального применения, ее можно использовать практически в любой области для распознавания образов, прогнозирования, классификации данных, принятия решений или синтеза. Возьмем сферу страхования, о которой идет речь в рассказе «Золотой слон».
ИИ в приложениях Ganesh Insurance предобучили оценивать вероятность развития у клиента компании серьезных проблем со здоровьем и соответствующим образом корректировать его страховой взнос.
Чтобы сеть научилась отделять тех, у кого с большой вероятностью возникнут такие проблемы, от тех, у кого они, скорее всего, не возникнут, ИИ «тренируют» на обучающих данных, включающих в себя информацию обо всех прошлых заявителях на получение страховки, обо всех их обращениях в медицинские учреждения с разными жалобами и об их семьях. Каждый случай маркируют на выходном слое меткой «обращался с серьезными медицинскими проблемами» или «не обращался с серьезными медицинскими проблемами».
Использование глубокого обучения привело к существенному снижению частоты ошибок при распознавании объектов компьютерным зрением
Впитав в себя в процессе предобучения весь этот набор данных, ИИ может делать предсказания вероятности возникновения у заявителя серьезных проблем со здоровьем и решать, одобрять заявку на страхование или нет, и если да, то каким при этом должен быть страховой взнос.
Обратите внимание: в данном сценарии ни одному человеку не придется маркировать претендента на оформление страховки как объект, имеющий риски с точки зрения здоровья или же не имеющий таковых. Эти метки основываются исключительно на «достоверной информации» (например, были ли у претендента на оформление страховки серьезные жалобы на здоровье в прошлом).