Что касается жидкой среды, то нужно иметь о ней представление, соответствующее её свойствам. Заряды в жидкости не имеют вертикальных молекулярных связей, этим они подобны зарядам в газе, но имеют горизонтальные молекулярные связи, этим они подобны зарядам в твëрдом веществе. Горизонтальные молекулярные связи в жидкости образуются благодаря тому, что все частицы в жидкости соориентированы магнитным полем планеты, я так полагаю исходя из наличия круговых океанских течений. По сути, жидкость – это тончайшие слои твëрдого вещества, наложенные друг на друга. Если брать эти слои в отдельности, то они выглядят как плëнка, ими создаëтся поверхностное натяжение воды, например, оболочка пузырей, пены, а если брать эти слои вместе, то они начинают продольно скользить, как пачка листов бумаги, образуется текучесть жидкости. Но нужно учитывать, что эта текучесть возможна только под действием гравитации планеты, в невесомости жидкость не течëт. В невесомости жидкость образует плëночные пузыри (водяной шар в невесомости – это множество пузырей, вложенных один в другой). Уберите земную гравитацию, и вы сразу поймëте, что представляет собой жидкость – это одномерный твëрдый материал, наподобие плëнки, связанный в одной плоскости, а не в объёме, как привычное нам твёрдое тело.

Поскольку молекулярные связи в плоскости сильны, материал замыкается в пузыри. Он и в условиях гравитации планеты стремится это делать, но тут у материала появляется такое свойство как текучесть, и он меняет форму, становится жидкостью. То есть, повторю, жидкость может существовать только в условиях гравитационного действия планеты, под действием гравитации твëрдый, многослойный одномерный материал с электрическими зарядами на разрывах, начинает течь.

А вот многомерный твердый материал в условиях гравитации не течëт, он сохраняет целостность своей структуры, геометрию которой гравитация чуть-чуть нарушает, что характеризуется таким свойством как вязкость.

В диэлектрике оси зарядов подвижны. Именно поэтому они могут менять ориентацию под действием электрического поля и выстраиваться в последовательно соединëнные электрические цепи.

В проводнике оси зарядов не подвижны. Именно поэтому они не меняют ориентацию под действием электрического поля и проводят электрический ток. Каким образом это происходит? Как выглядит механика проводимости твёрдого тела? Всё очень просто. Заряды расположены параллельно друг другу. Их удерживают в таком состоянии силы внутриатомного притяжения. Заряды вращаются (само слово заряд в физическом смысле уже означает вращение; когда я говорю, что заряд неподвижен, я имею в виду фиксированное вращение). Заряды вращаются, увеличение скорости вращения приводит к тому, что диаметр зарядов увеличивается, они входят в механическое сцепление друг с другом и начинают передавать свою энергию вращения другу другу как шестерёнки в зубчатом механизме. Только сцепление происходит не зубцами, а вихревыми полями. При достаточной жёсткости сцепления энергия тока проходит по проводнику почти без потерь, со скоростью света. Свойства проводника на скорость тока не влияют. Если вы возьмёте ряд идеальных шестерёнок, у которых нет никакой подвижности, кроме осевого вращения, то у вас получится такая же мгновенная передача энергии, от первой шестерёнки к последней.

Но самое интересное – как эти шестерёнки вращаются? Подумайте – как? Они вращаются навстречу друг другу! Таким образом через один вы будете регистрировать положительный и отрицательный ионный заряд. И вот, какой-то умник, прошу прощения, снимая эти показания, решил, что данная картина подтверждает движение электронов в цепи электрического тока и даже определил скорость их движения – несколько миллиметров в секунду (не знаю, может рука тряслась у него). Но что на самом деле зарегистрировал прибор? Он зарегистрировал вращения зарядов по часовой и против часовой стрелки через один. Детектировать на таком микроскопическом уровне можно только вращение. Именно поэтому штука, которая детектирует вращение, называется электронный микроскоп. Она ничего не видит. Она только чувствует иглой направление статического тока (заряда) к игле и от иглы, и в зависимости от этого направления определяет, положительный или отрицательный заряд оказал воздействие на иглу микроскопа. Всё остальное учëные домысливают и дорисовывают сами, пытаясь интерпретировать процессы, происходящие в проводнике. Они делают это c некоторой долей наивности, поэтому комментировать их интерпретации довольно тяжело.