Чтобы осуществилось подкрепление, должен возникнуть обучающий сигнал. Он изменяет способ работы нейронных цепей в базальных ганглиях. При этом действия с хорошей ответной реакцией закрепляются, а с плохой – отсеиваются. Большинство ученых полагают, что обучающий сигнал в мозге производят удивительные молекулы дофамина.[35]

Обучающая молекула

Росс МакДевитт, стажер-исследователь из Национального института здравоохранения в городе Балтимор, аккуратно сажает подопытную мышь в пластиковую клетку и присоединяет к ее голове тонкий волоконно-оптический кабель, там же расположен миниатюрный коннектор. МакДевитт пользуется передовым методом исследования, который получил название оптогенетики, чтобы воздействовать на клетки мозга в вентральной тегментальной области (вентральной области покрышки). Как мы уже выяснили в предыдущей главе, вентральный тигментум посылает дофаминовые волокна в главный мотивационный центр мозга – вентральный стриатум (рис. 14). Волокна выделяют молекулы дофамина, которые изменяют функцию клеток вентрального стриатума и прилежащих к нему других отделов мозга. Этот процесс оказывает влияние на поведение. Мы уже говорили о том, что высокий уровень дофамина повышает вероятность того, что власть над поведением перейдет в руки определенного генератора сигналов. Дофамин оказывает и более тонкое воздействие на организм. Фактически дофамин является средством подкрепления.


Рис. 14. Дофаминовая связь вентральной тегментальной области и вентрального стриатума. По этому пути проходит подкрепление мотивации и обучение.


В ходе эксперимента МакДевитт вызывает всплеск дофамина в вентральном стриатуме одним щелчком выключателя. Эксперимент наглядно демонстрирует эффективность такого способа обучения и мотивировки.

В клетке у мышки стоит маленькая коробочка. Каждый раз, когда мышь трогает носом коробочку, к датчику на ее голове по кабелю поступает световой сигнал. Сигнал активизирует нейроны в вентральной области покрышки, они выбрасывают порцию дофамина в вентральный стриатум и прилежащие отделы мозга. Но в начале эксперимента мышь об этом ничего не знает. Когда она впервые попадает в клетку, то не проявляет заинтересованности к коробочке. Впервые она дотрагивается до нее носом случайно, из простого любопытства. Всякий раз, когда мышь тычется носом в коробочку, она разом испытывает мышиный эквивалент откушенной шоколадки, секса и выигрыша в лотерею.

Проходит совсем немного времени – и мышь дотрагивается носом до коробочки все чаще. «Мы обнаружили, – говорит МакДевитт, – что мыши начинают сходить с ума от удовольствия. Им этот процесс очень нравится». Хотя изначально мышь соприкасается с коробкой из любопытства, вскоре она понимает исключительную важность этой вещи. Мыши МакДевита в итоге тыкались носом в коробочку со скоростью восемь сотен раз в час, игнорируя все окружающее их пространство. В ходе других опытов над крысами ученые зафиксировали, что животные успевали тыкать носом в коробочку пять тысяч раз за час, чтобы почувствовать стимуляцию вентральной тегментальной области. Они совершали это движение чаще, чем раз в секунду! Другими словами, всплеск дофамина в вентральном стриатуме подкрепляет действие.

На клеточном уровне дофамин взаимодействует с нейронными связями в базальных ганглиях, которые только что проявляли активность, и повышает вероятность того, что те же самые нейронные связи вновь будут задействованы. Таким образом, вы захотите повторить снова любое действие, которые совершаете на момент дофаминового всплеска, если подходящая ситуация повторится. Вентральная тегментальная область говорит: «Мне понравилось то, что сейчас произошло. Я, пожалуй, выплесну дофамин в вентральный стриатум, чтобы в следующий раз произошло то же самое».