Тем не менее данный показатель не идеален. В нем не учитывается сложность учебных программ, которые проходят разные ученики. Как можно сравнивать знания учащегося со средним баллом 3,4, обучавшегося по относительно легкой программе, и его сверстника со средним баллом 2,5, изучавшего математику, физику, химию и другие сложные предметы? В свое время я посещал школу, которая пыталась решить эту проблему, присваивая таким дисциплинам дополнительные весовые коэффициенты, в результате чего оценка A по предмету повышенной трудности соответствовала пяти баллам, а по обычному предмету приравнивалась к четырем. Однако у данного подхода были существенные минусы. Моя мать довольно быстро уяснила, как эта «поправка» влияет на средний балл. Дело в том, что для таких учеников, как я (изучавших много сложных предметов), максимальная оценка A по любому из обычных предметов (например, по физкультуре или основам безопасности жизнедеятельности) не могла превышать 4 баллов, что снижало средний балл, как бы хорошо мы ни учились. В результате родители запретили мне посещать в школе курсы вождения автомобиля, поскольку даже самые высокие оценки по этому курсу уменьшали мои шансы на поступление в какой-либо престижный колледж и последующие занятия писательским трудом. Поэтому они отправили меня в частную (платную) школу вождения, которую мне пришлось посещать летом.

Глупость? Конечно! Но одной из тем, которые я затрону в этой книге, будет опасность чрезмерного увлечения любой из описательных статистик, поскольку это может привести к ошибочным умозаключениям и подтолкнуть к нежелательным действиям. В первоначальном варианте книги я использовал выражение «упрощенная описательная статистика», однако в конечном счете выбросил слово «упрощенная», поскольку оно показалось мне заведомо избыточным. Описательная статистика для того и существует, чтобы упрощать, что всегда подразумевает некоторую потерю нюансов и деталей. Каждый, кто работает с числами, должен воспринимать это как данность.

Умозаключения

Сколько бездомных живет на улицах Чикаго? Как часто женатые пары занимаются сексом? На первый взгляд у этих вопросов нет ничего общего. На самом же деле на каждый из них можно ответить (правда, не с абсолютной точностью) с помощью базовых статистических инструментов. Одна из ключевых функций статистики – использование имеющихся данных для выдвижения аргументированных предположений, касающихся вопросов, исчерпывающий ответ на которые невозможно дать из-за отсутствия полной информации. Короче говоря, мы можем использовать данные из «известного мира» для построения обоснованных гипотез относительно «неизвестного мира».

Начнем с вопроса о бездомных. Точно подсчитать их количество в крупном мегаполисе и дорого, и затруднительно. Тем не менее располагать численной оценкой этой группы населения необходимо с целью предоставления социальных услуг, обоснования права на получение части доходов штата и федеральных доходов и соответствующего представительства в Конгрессе. Одним из важных статистических методов является выборочное исследование – процесс сбора данных по какой-то небольшой области, например нескольких районов, где проводилась перепись населения, чтобы на их основе сделать умозаключение о количестве бездомных в городе в целом. Такой подход требует значительно меньших ресурсов, чем попытка сосчитать всех бездомных; к тому же при правильном проведении выборочного исследования можно получить очень близкий к точному результат.

Опрос общественного мнения – еще одна форма статистической выборки. Скажем, исследовательская организация опрашивает членов среднестатистических семей, чтобы выяснить их точку зрения на ту или иную проблему или их мнение о том или ином политическом деятеле. Сделать это, естественно, гораздо проще, дешевле и быстрее, чем обойти все домохозяйства в соответствующем штате или стране в целом. По расчетам Американского института общественного мнения (Институт Гэллапа), методологически правильный опрос 1000 семей дает практически такие же результаты, как и опрос