Здравый смысл (Commonsense knowledge) – это одна из ветвей искусственный интеллект (AI), которая занимается моделированием способности человека делать предположения о типе и сущности обычных ситуаций, с которыми он сталкивается каждый день. Эти предположения включают суждения о физических свойствах, целях, намерениях и поведении людей, а также о возможных результатах их действий и взаимодействий.
Зима искусственного интеллекта (Winter of artificial intelligence, AI winter) – это период сокращения интереса к предметной области, сокращения финансирования исследований. Термин был придуман по аналогии с идеей ядерной зимы. Область искусственного интеллекта пережила несколько циклов ажиотажа, за которыми последовали разочарование и критика, за которыми последовало сильное охлаждение интереса, а потом последовало возобновление интереса спустя годы или десятилетия.
Знания (Knowledge) – это проверенный практикой и удостоверенный логикой результат познания действительности, отраженный в сознании человека в виде представлений, понятий, рассуждений и теорий. Знания формируются в результате целенаправленного педагогического процесса, самообразования и жизненного опыта.
Значение алгоритма (Rete algorithm) – это алгоритм сопоставления с образцом для реализации систем, основанных на правилах. Алгоритм был разработан для эффективного применения многих правил или шаблонов ко многим объектам или фактам в базе знаний. Он используется для определения того, какое из правил системы должно срабатывать на основе ее хранилища данных, ее фактов.
«И»
Игровая площадка TensorFlow (TensorFlow Playground) – это инструмент, который поможет вам понять идею нейронных сетей без сложных математических вычислений. TensorFlow Playground, веб-приложение, написанное на JavaScript, которое позволяет вам играть с настоящей нейронной сетью, работающей в вашем браузере, и нажимать кнопки и настраивать параметры, чтобы увидеть, как это работает.
Игровой ИИ (Game AI) – это форма ИИ, характерная для игр, которая использует алгоритм для замены случайности. Это вычислительное поведение, используемое в персонажах, не являющихся игроками, для генерации интеллекта, подобного человеческому, и основанных на реакции действий, предпринимаемых игроком.
Иерархическая кластеризация (Hierarchical clustering) – это алгоритм машинного обучения без контроля, который используется для группировки непомеченных точек данных, имеющих сходные характеристики. Алгоритмы иерархической кластеризации делятся на две категории. Агломерационные иерархические алгоритмы. В агломерационных иерархических алгоритмах каждая точка данных обрабатывается как один кластер, а затем последовательно объединяется или агломерирует (подход снизу вверх) пары кластеров. Иерархия кластеров представлена в виде дендрограммы или древовидной структуры. Разделительные иерархические алгоритмы. С другой стороны, в разделительных иерархических алгоритмах все точки данных обрабатываются как один большой кластер, а процесс кластеризации включает в себя разделение (нисходящий подход) одного большого кластера на различные маленькие кластеры.
Иерархический файл(Hierarchical file) – этот файл содержит информацию, собранную по нескольким единицам анализа в разных типах записей. Например, физическая жилая структура может быть одной единицей, а отдельные люди в структуре – другой. Примером может служить Текущее обследование населения: годовой демографический файл, в котором есть единицы анализа домохозяйства, семьи и человека. Исследования, включающие данные для разных единиц анализа, часто связывают эти единицы друг с другом, так что, например, можно анализировать людей по мере того, как они группируются в структуру.