Перспективной концепцией, лишенной вышеуказанных ограничений, является концепция гибридного интеллекта, объединяющая сильные стороны узкого ИИ и возможности человека. Гибридные интеллектуальные системы обладают следующими ключевыми особенностями: Когнитивная интероперабельность – позволяет искусственным и естественным интеллектуальным агентам легко общаться для совместного решения проблемы; Взаимная эволюция (коэволюция) – позволяет гибридной системе развиваться, накапливать знания и формировать общую онтологию предметной области. Ядром гибридизации человеко-машинного интеллекта является функциональная совместимость биологических и технических систем на разных уровнях от физических сигналов до когнитивных моделей.


Гибридные модели (Hybrid models) – это комбинации моделей на основе данных с «классическими» моделями, а также комплексирование различных методов искусственного интеллекта.


Гибридный суперкомпьютер (Hybrid supercomputer) – это вычислительная система, объединяющая ЦП традиционной архитектуры (например, x86) и ускорители, например, на вычислительных графических процессорах.


Гиперпараметр (настройка гиперпараметра) (Hyperparameter) – в машинном обучении – это параметры алгоритмов, значения которых устанавливаются перед запуском процесса обучения. Гиперпараметры используются для управления процессом обучения [23].


Гипер-эвристика (Hyper-heuristic) – это эвристический метод решения задачи, который стремится автоматизировать, часто путем включения методов машинного обучения, процесс выбора, объединения, генерации или адаптации нескольких более простых эвристик (или компонентов таких эвристик) для эффективного решения задач вычислительного поиска. Одной из мотиваций для изучения гипер-эвристики является создание систем, которые могут обрабатывать классы проблем, а не решать только одну проблему.


Глубина (Depth) – это количество слоев (включая любые встраивающие слои) в нейронной сети, которые изучают веса. Например, нейронная сеть с 5 скрытыми слоями и 1 выходным слоем имеет глубину 6.


Глубокая модель (Deep model) – это тип нейронной сети, содержащий несколько скрытых слоев.


Глубокая нейронная сеть (Deep neural network, глубинная нейронная сеть, ГНС) многослойная сеть, содержащая между входным и выходным слоями несколько (много) скрытых слоёв нейронов, что позволяет моделировать сложные нелинейные отношения. ГНС сейчас всё чаще используются для решения таких задач искусственного интеллекта, как распознавание речи, обработка текстов на естественном языке, компьютерное зрение и т.п., в том числе в робототехнике.


Глубоко разделяемая сверточная нейронная сеть (Depthwise separable convolutional neural network) – это архитектура сверточной нейронной сети, основанная на Inception (раздел с данными на GitHub), но в которой модули Inception заменены свертками, отделяемыми по глубине. Также известен как Xception.


Глубокое обучение (Deep Learning) – это глубокое (глубинное) структурированное или иерархическое машинное обучение, набор алгоритмов и методов машинного обучения (machine learning) на основе различных видов представления данных. Обучение может быть контролируемым, полу-контролируемым (semi-supervised) или неконтролируемым. Использование в глубоком обучении рекуррентных нейронных сетей (recurrent neural networks), позволяет эффективно решать задачи в областях компьютерного зрения, распознавания речи, обработки текстов на естественном языке, машинного перевода, биоинформатики и др.


Государство-как-Платформа (State-as-Platform) – это концепция трансформации государственного управления с использованием возможностей, которые нам дают новые технологии. Целевой функцией реализации идеи «Государство-как-Платформа» является благополучие граждан и содействие экономическому росту, основанному на внедрении технологий. В фокусе развертывания Платформы находится гражданин в условиях новой цифровой реальности. Государство должно создать условия, которые помогут человеку раскрыть свои способности, и сформировать комфортную и безопасную среду для его жизни и реализации потенциала, а также для создания и внедрения инновационных технологий.