– это набор инструкций для решения проблемы или выполнения задачи. Одним из распространенных примеров алгоритма является рецепт, который состоит из конкретных инструкций по приготовлению блюда или еды. Каждое компьютеризированное устройство использует алгоритмы для выполнения своих функций в виде аппаратных или программных процедур. В финансах алгоритмы играют важную роль в разработке систем автоматизированной и высокочастотной торговли (HFT), а также в ценообразовании сложных финансовых инструментов, таких как производные финансовые инструменты9.


Алгоритмическая оценка (Algorithmic Assessment) – это техническая оценка, которая помогает выявлять и устранять потенциальные риски и непредвиденные последствия использования систем искусственного интеллекта, чтобы вызвать доверие и создать поддерживающие системы вокруг принятия решений ИИ.


Алгоритмы машинного обучения (Machine learning algorithms) – это фрагменты кода, которые помогают пользователям исследовать и анализировать сложные наборы данных и находить в них смысл или закономерность. Каждый алгоритм – это конечный набор однозначных пошаговых инструкций, которые компьютер может выполнять для достижения определенной цели. В модели машинного обучения цель заключается в том, чтобы установить или обнаружить закономерности, с помощью которых пользователи могут создавать прогнозы либо классифицировать информацию. В алгоритмах машинного обучения используются параметры, основанные на учебных данных (подмножество данных, представляющее более широкий набор). При расширении учебных данных для более реалистичного представления мира с помощью алгоритма вычисляются более точные результаты. В различных алгоритмах применяются разные способы анализа данных. Они часто группируются по методам машинного обучения, в рамках которых используются: контролируемое обучение, неконтролируемое обучение и обучение с подкреплением. В наиболее популярных алгоритмах для прогнозирования целевых категорий, поиска необычных точек данных, прогнозирования значений и обнаружения сходства используются регрессия и классификация10.


Анализ временных рядов (Time series analysis) – раздел машинного обучения и статистики, который анализирует временные данные. Многие типы задач машинного обучения требуют анализа временных рядов, включая классификацию, кластеризацию, прогнозирование и обнаружение аномалий. Например, вы можете использовать анализ временных рядов, чтобы спрогнозировать будущие продажи зимних пальто по месяцам на основе исторических данных о продажах.


Анализ экономического эффекта (Economic impact analysis) исследует влияние события на экономику в определенной области, от одного района до всего земного шара. Обычно он измеряет изменения в доходах от бизнеса, прибылях от бизнеса, личной заработной плате и / или рабочих местах. Анализируемое экономическое событие может включать в себя реализацию новой политики или проекта или просто присутствие предприятия или организации. Анализ экономического воздействия обычно проводится, когда общественность обеспокоена потенциальными последствиями предлагаемого проекта или политики11.


Аналитика данных(Data analytics) – это наука об анализе необработанных данных, чтобы делать выводы об этой информации. Многие методы и процессы анализа данных были автоматизированы в механические процессы и алгоритмы, которые работают с необработанными данными для потребления человеком12.


Аналитика принятия решений (Decision intelligence) – это практическая дисциплина, используемая для улучшения процесса принятия решений путем четкого понимания и программной разработки того, как принимаются решения, и как итоговые результаты оцениваются, управляются и улучшаются с помощью обратной связи.