) и выделение его через легкие, далее изменения состава крови, скорости кровотока, повышение эффективности тканевых и молекулярных механизмов энергообеспечения. Однако, по данным Д.А. Полищука, прирост спортивных результатов наблюдается лишь на 30-31-й день пребывания в среднегорье, а до 20-го дня происходит перестройка функциональных систем организма.

Таким образом, метод активной адаптации организма спортсмена к гипоксии вследствие тренировки в среднегорье приводит к значительному расширению функциональных возможностей организма и улучшению спортивно-технических результатов.

Тренировка в условиях среднегорья сопровождается увеличением способности тканей и органов утилизировать кислород из гипоксической среды:

– легочной вентиляции;

– сердечного выброса;

– содержания гемоглобина в крови;

– количества эритроцитов;

– количества миоглобулина;

– размера и количества митохондрий;

– количества окислительных ферментов.

Факторы, лимитирующие работоспособность:

– потребление кислорода и закисление (накопление лактата крови) при стабилизации или снижении частоты сердечных сокращений (ЧСС);

– дефицит макроэргов и увеличение потенциала фосфорилирования;

– усиление процессов фосфорилирования и повышение выработки митохондриями аденозинтрифосфорной кислоты (АТФ).

В.В. Матов, И.Д. Суркина (1968), Н.А. Агаджанян (1983) отметили повышение функциональных возможностей спортсменов при применении метода повторных подъемов в камере низкого давления. Было установлено, что при подъеме на 5000 м минутный объем дыхания (МОД) возрастает на 90 %, глубина дыхания увеличивалась на 100–400 мл, частота – на 2–3 дыхания в мин. Однако пассивная адаптация к гипоксии в барокамере дает небольшой и кратковременный эффект.

Тренировка с искусственной задержкой дыхания позволила сократить объем тренировочных нагрузок и повысить спортивные результаты при подготовке лыжников, пловцов и бегунов на средние дистанции (Архаров С.И., 1967; Слогуб С.Л., 1998; Якимов А.М., 2009). Авторы доказали, что этот метод может быть использован на равнине для подготовки спортсменов к состязаниям в среднегорье.

Е. Каунсильмен[1] (1982) также установил, что в группе пловцов, тренировавшихся с задержкой дыхания, уровень максимального потребления кислорода (МПК) возрос на 16,6 %, а в контрольной группе лишь на 5,5 %. При этом у испытуемых не было обнаружено изменение объема сердца, количества эритроцитов и гемоглобина в крови. Автор полагает, что повышение МПК связано с улучшением капилляризации мышц, повышением эффективности внутриклеточных обменных процессов и способности вырабатывать большое количество энергии в единицу времени.

В последнее время в практике подготовки спортсменов широко стал применяться метод вдыхания гипоксически-гиперкапнических смесей (Глазачев О.С., Дудних Е.Н., Ярцева Л.А., 2010).

Н.А. Агаджанян, А.И. Елфимов (1983) выявили, что при использовании гипоксической смеси (15–16 % O>2) в тренировочном процессе показатели физической работоспособности у испытуемых повышались на 29 %, а в контрольной группе на 12–15 %, при вдыхании гипоксически-гиперкапнической смеси (1–2 % СO>2 и 14–15 % O>2) было зарегистрировано увеличение работоспособности на 34 %, тогда как в контрольной группе на 15 %.

Таким образом, гипоксическая гипоксия в сочетании с физической нагрузкой является наиболее перспективной в повышении адаптации резервов организма, но предлагаемый метод гипоксической тренировки (в среднегорье, барокамере) не всегда приемлем и недоступен для массового применения.

Наиболее доступен для спортивной практики метод гипоксической тренировки с применением специальных масок, создающих ДМП.