Рис. 3.9. К закономерности «нагрузка – сила».


Подтверждение этой закономерности легко найти в обиходе: человек не в состоянии развить большую силу, разрывая рукой паутину; спортсмен обнаруживает более значительные усилия при подъеме тяжелой штанги, чем при выталкивании ядра, и т. д. Однако, если сопротивление становится слишком большим, максимальные усилия, развиваемые человеком, не смогут подняться выше предела его возможностей в данном двигательном действии, как бы ни возрастало внешнее воздействие. Таковы, например, условия изометрической работы, когда спортсмен, предельно напрягаясь, стремится «сломать стену». Это обстоятельство накладывает отпечаток на выбор оптимальных отягощений или степеней напряжения при тренировке силы, скоростно-силовых качеств, а также при обучении сложно координированным упражнениям. В этом случае, полноценное управление двигательным действием возможно лишь в условиях, когда спортсмен не только действует максимально эффективно в силовом, энергетическом смысле, но и свободно управляет движением.

Для иллюстрации последнего положения приведем косвенный пример с выбором оптимальной скорости разбега при опорных гимнастических прыжках: как правило, при «гладком» беге по дистанции спортсмен способен развивать бóльшую скорость, чем та, которая используется им в разбеге перед прыжком. Попытка действовать в разбеге с максимальным напряжением отвлекает на себя все потенциальные ресурсы управления движением и лишает исполнителя возможности уверенно и точно действовать в финале разбега, при наскоке на снаряд. Оптимален вариант действий, при котором спортсмен разбегается с максимально доступной ему скоростью, при которой сохраняется возможность точного управления двигательным действием. Это т. н. «скорость реализации» (Ю. А. Ипполитов, 1976), которая тем больше (и ближе к скорости «гладкого» бега), чем выше мастерство исполнителя. Это объясняет парадоксальные случаи, когда неопытный спортсмен, владеющий бóльшей, чем у мастера, скоростью «гладкого» бега, перед прыжком разбегается гораздо медленнее.


Закономерность «длина-напряжение». Как отмечено выше, миотатический рефлекс, являющийся базовой закономерностью и определяющей многие свойства поперечнополосатой мускулатуры, лежит в основе и других важных свойств работы мышцы. Одна из них – активизация мышцы в ответ на ее натяжение. Упругие свойства покоящейся (пассивной) мышцы проявляются в том, что при натяжении в ней развивается напряжение11. При этом напряжение, которое развивает мышца при сокращении в ответ на импульсацию, исходящую от мотонейронов, зависит от фактической ее длины. Эта зависимость выражается в форме характеристической кривой «длина-напряжение» (рис. 3.10).


Рис. 3.10. Зависимость «длина – напряжение».


До известных пределов связь «длина-напряжение» носит почти линейный характер (а-в), и чем больше, в границах этой зоны, натяжение мышцы, тем больше ее напряжение. Напряжение сокращающейся мышцы максимально, если ее длина примерно на 20% больше т.н. «равновесной» длины, при ее полном покое и расслаблении (а). Однако, по достижении некоторого максимума увеличение длины мышцы не только не дает прироста напряжения, но вызывает его снижение (в-г). Это называется охранительная реакция мышцы.

Наибольшая длина мышцы в условиях анатомической нормы обычно достигается при максимальном удалении друг от друга костных рычагов и точек ее прикрепления. Однако, оптимум натяжения мышцы не всегда достижим. Так, даже предельное разгибание руки в локтевом суставе не может сильно натянуть сгибатели предплечья. И напротив, максимальное сгибание тела в тазобедренных суставах (в положениях типа «складки») или его прогибание (при упражнениях типа гимнастического «мостика») может привести к запредельному натяжению мышц, при котором их напряжение падает, и значительных усилий в этом случае исполнитель упражнения развить не сможет.