Представленные здесь примеры из геометрии являются не просто инструкцией о том, как справиться со своей скорбью, они рисуют план действий, который помог мне. Возможно, эти вехи укажут путь, чтобы вы, с помощью моего подхода, смогли сами умерить свою боль. И, возможно, они помогут вам увидеть геометрию в своей жизни там, где раньше вы ее не замечали.
1. Геометрия
Жаль, что уже не увижу деревья, какими видел их раньше.
Представьте, что сейчас ранняя весна, вечерние сумерки, и вы сидите в каком-то малознакомом парке. Что вы увидите, подняв глаза от страницы этой книги? Вероятно, замысловатый узор из светлых и темных силуэтов, вливающихся в шероховатые столбы – стволы деревьев; толстые ветви, ветки потоньше, мелкие прутья; потрепанные обрывки плоскостей – листьев. А еще цветы и траву. Геометрические формы позволяют нам узнавать или, по крайней мере, называть то, что нас окружает.
Мы видим, как зрительно меняются формы, распознаём их движение – наблюдаем, например, как листья и ветки покачиваются от легкого ветерка.
Листья на вершине высокого дерева всё еще освещены солнцем, хотя ствол погружен в темноту. Мы обычно говорим, что тьма спускается, но здесь она как будто поднимается (а если мы придем в парк утром, то увидим, как по стволу дерева спускается рассвет). Геометрия солнца и земли являет во всей простоте то, чего мы раньше не замечали в этом мире.
На протяжении веков художники великолепно чувствовали геометрию. Приведу лишь несколько примеров. А если вы немного покопаетесь в «Гугле», то найдете еще больше.
Построенный в IX, а затем воссозданный в XIII веке дворец Альгамбра в испанской Гранаде – прекрасный образец исламского искусства и архитектуры. Множество декоративных мозаик, включая ту, что приведена ниже, являются замощениями плоскости правильными многоугольниками.
Это фигуры, которыми можно покрыть всю поверхность без наложений и пропусков, поскольку все они соприкасаются друг с другом лишь краями (частично или полностью). Клетки шахматной доски или шестиугольные пчелиные соты – наиболее известные из таких фигур, но есть и другие.
В книге Бранко Грюнбаума[17] и Джоффри Шепарда[18]«Плитки и паттерны» (этот семисотстраничный труд вполне заслуживает эпитета «всеобъемлющий») приводится огромное количество примеров не столько из области искусства, сколько из области математики[19]. Вообще существует семнадцать различных паттернов, обладающих красноречивым названием «группы орнамента». То, что таких паттернов всего семнадцать, было доказано в конце XIX века, но исламские художники знали об этих способах мощения за сотни лет до того, как русский кристаллограф и математик Евграф Фёдоров представил свое доказательство данного тезиса[20]. Иногда художники интуитивно делают открытия, которые математики проверяют и доказывают лишь многие годы спустя.
Взаимодействие геометрии и искусства отражают также подобные треугольники. Из школьных уроков геометрии мы знаем, что два треугольника подобны, если они имеют одинаковую форму, даже если у них разные размеры. Фигура называется самоподобной, если она состоит из элементов, каждый из которых подобен целой фигуре. На верхнем рисунке слева приведена фигура, состоящая из треугольников, расположенных внутри других треугольников, – это треугольник Серпинского, одна из самых известных самоподобных фигур. Чтобы увидеть ее самоподобие, обратите внимание на то, что она состоит из трех частей – нижней левой, нижней правой и центральной верхней, – каждая из которых подобна целому треугольнику. Об этом треугольнике мы поговорим подробнее в третьей главе.