Изучение свойств РНК привело к тому, что представление об исключительности белков в катализе биохимических реакций пришел конец. Выяснилось, что в природе имеются виды РНК, которые, подобно белкам, обладают высокоспецифической каталитической активностью.
Очень важным стало обнаружение в геноме человека множества других генов, также производящих РНК, но не способных кодировать белок. Постепенно выяснилось, что некоторые из таких не кодирующих белки РНК принимают участие в важнейших процессах, происходящих в клетке: регуляции транскрипции ДНК, сплайсинга и трансляции мРНК, модулировании функций белков и их пространственного распределения в клетке. По этой причине их назвали риборегуляторами. И примеров таких риборегуляторов уже сейчас можно привести немало. Так, установлено, что не кодирующий белок участок гена H19 имеет отношение к ряду процессов, протекающих в клетках, и, в частности, к их злокачественному перерождению. Другой РНК–кодирующий ген контролирует работу белок–ко–дирующего гена HFE, вовлеченного в метаболизм железа и связанного с наследственным заболеванием хемохроматозом. В последнем случае РНК–продукт кодируется тем же самым геном, который он регулирует, но его образование осуществляется на другой нити ДНК. В результате так называемый антисмысловой (комплементарный) РНК–продукт способен взаимодействовать с мРНК, образуя гибриды, неспособные транслироваться в рибосомах с образованием белка. Еще один интересный ген – ген РНК–активатора стероидного рецептора. Он обеспечивает активность стероидных рецепторов за счет образования комплекса с этим белком.
В клетках человека, как и у других организмов, выявлены короткие двунитевые РНК (микроРНК), отдельные из которых, по–видимому, могут участвовать в процессе регуляции экспрессии генов через механизм, названный РНК–интерференцией. Этот механизм впервые был обнаружен в 1998 году у низших организмов. Различные микроРНК в клетках червя C. elegans оказались в состоянии «приглушать» работу строго определенных генов путем воздействия на процесс синтеза кодируемых ими белков. Вполне вероятно, и у человека микроРНК играют подобную роль.
Таким образом, мы видим, что продукты генов, кодирующих только РНК, вмешиваются в различные клеточные процессы, используя при этом совершенно разные механизмы. Гены риборегу–ляторов составляют, по–видимому, заметную часть генома человека. Примерные оценки говорят о величине на порядок больше, чем доля белок–кодирующих нуклеотидных последовательностей. Сам факт существования таких генов, неспособных кодировать белок, но реально проявляющих себя в производстве функционирующих в клетках РНК, ставит большой вопрос перед исследователями генома. И, в первую очередь, что следует после этого считать собственно геном?
Ген в гене (генная матрешка)
Изредка обнаруживаются варианты, когда внутри одного гена целиком содержится другой, меньший по размерам ген. Этакая своеобразная «матрешка», построенная из генов. Такая организация генов весьма редка. Так, в хромосоме 22 имеется лишь 2 таких случая. Чаще всего белок–кодирующий ген располагается в интроне другого белок–кодирующего гена. Но встречаются и другие варианты. В качестве примера можно привести ситуацию, имеющую место для ми–тохондриального гена одной из рибосомных РНК. Ген, кодирующий эту рРНК, обеспечивает ею рибосомы митохондрий в качестве структурного компонента (т. е. не кодирует белок). Однако вместе с тем небольшой участок, расположенный внутри этого гена, кодирует короткий белок (полипептид), получивший название гуманин (от англ. human – человек), который принимает участие в процессе программированной клеточной гибели. То есть в РНК–кодирующем гене может содержатся белок–кодирующий ген. Другой вариант—уже упоминавшийся выше ген H19. Здесь, наоборот, ген, кодирующий белок, содержит внутри своей кодирующей части другой более короткий ген, кодирующий только РНК, которая принимает участие в регуляции работы этого гена.