§307. В том же 1939 году Роберт Оппенгеймер и еще один его аспирант Хартланд Снайдер рассмотрели процесс гравитационного сжатия строго сферического невращающегося пылевого облака с постоянной плотностью. [655] По их модели космического вещества частички пылевидной материи по определению взаимодействуют друг с другом исключительно посредством взаимного притяжения (следовательно, давление в таком облаке равно нулю) и потому движутся по геодезическим мировым линиям; кроме того, такая система не имеет термодинамических характеристик194.
§308. Лео Силард в 1939 году обосновал возможность развития в уране самоподдерживающейся ядерной реакции при делении ядер урана, а также одним из первых доказал, что в процессе деления ядер урана излучаются вторичные нейтроны. Силард совместно с Вальтером Генри Зинном получил значение среднего числа вторичных нейтронов на один акт деления в ходе эксперимента, используя радий-бериллиевый источник для бомбардировки урана нейтронами. [656] Они обнаружили значительное размножение нейтронов в природном уране, доказав, что цепная реакция возможна.
§309. Константин Антонович Петржак и Георгий Николаевич Флеров (1940) в лаборатории Игоря Васильевича Курчатова Ленинградского физико-технологического института открыли новый вид радиоактивного распада атомных ядер – спонтанное деление. [657] При всех прочих превращениях атомное ядро испускает частицы, которые существенно меньше его по массе и размерам. При спонтанном делении ядро атома делится, грубо говоря, на две равные части. Эта особенность спонтанного деления позволяет получить ценную информацию об атомном ядре. Было доказано, что атомное ядро делится спонтанно потому, что, начиная с некоторой массы, электрические силы расталкивания протонов превосходят специфические ядерные силы, обеспечивающие ту связь, которая заставляет свободные нуклоны сливаться и образовывать атомное ядро. Нестабильность относительно деления возникает с ростом массы не вдруг, а постепенно. В очень слабой степени она проявляется на опыте только для самого тяжелого природного элемента – урана195.
§310. Кеннет Эссекс Эджворт (1943) предположил, что в области космоса за орбитой Нептуна первичные элементы туманности, из которой сформировалась Солнечная система, были слишком рассеяны для того, чтобы уплотниться в планеты. [658] Исходя из этого, он пришёл к выводу, что внешняя область Солнечной системы за орбитами планет занята огромным количеством сравнительно небольших тел, и что время от времени одно из этих тел «покидает своё окружение и появляется как случайный гость внутренних областей Солнечной системы, становясь кометой. Джерард Петер Койпер (1951) представил, что протяженный диск, который описывал Эджворт, образовался на ранних этапах формирования Солнечной системы; однако он не считал, что такой пояс сохранился и до наших дней. Койпер исходил из распространённого для того времени предположения о том, что размеры Плутона близки к размерам Земли и потому Плутон рассеял эти тела к облаку Оорта или вообще из Солнечной системы. [659]. Только в 1992 году пояс Эджворта-Койпера был подтвержден за орбитой Плутона196, как кольцеобразная область, населенная маленькими холодными телами. [660] Пояс Койпера и рассеянный диск, две другие известные области транснептуновых объектов, по диаметру примерно в тысячу раз меньше облака Оорта. Внешняя граница облака Оорта определяет гравитационную границу Солнечной системы – сферу Хиллса, определяемую для Солнечной системы в 2 световых года.
§311. Кристиан Мёллер (1945, 1946) вывел формулу, выражающую полное эффективное сечение столкновения двух частиц с образованием нескольких новых частиц. [661] Формула представляет процесс упругого рассеяния электрона на электроне, описываемый низшим порядком теории возмущений в квантовой электродинамике. Указанный процесс изображается двумя диаграммами Фейнмана. В этом приближении не учитываются радиационные поправки, а также излучение мягких фотонов, которым всегда сопровождается процесс рассеяния заряженных частиц. Релятивистски-инвариантное выражение для дифференциального сечения получается согласно правилам вычисления элементов S -матрицы в квантовой электродинамике.