§223. В 1915—1917 годах Альберт Эйнштейн опубликовал ряд работ по общей теории относительности, в которых он описал гравитацию как геометрическое свойство151 пространства-времени. [468] Эйнштейн применил свою общую теорию относительности к структуре Вселенной в целом. Поскольку в то время не было известно доказательств существования динамической Вселенной, Эйнштейн ввел в уравнения поля «космологическую постоянную», чтобы теория могла предсказать статическую Вселенную. Модифицированные уравнения поля предсказывали статическую Вселенную замкнутой кривизны в соответствии с пониманием Эйнштейном принципа Маха. [469] Эта модель стала известна как мир Эйнштейна или статическая Вселенная Эйнштейна. Впоследствии данные утверждения о космологической постоянной и статической модели Эйнштейном (1931) были пересмотрены, когда он исследовал модель расширяющейся Вселенной, в которой плотность материи остается постоянной из-за непрерывного создания материи – процесса, который он связал с космологической постоянной. [470]

§224. Харлоу Шепли (1917—1918) предложил модель нашей Галактики, согласно которой звёзды и туманности образуют плоскую линзообразную систему диаметром 300 000 световых лет и толщиной 30 000 световых лет с центром, расположенным в направлении созвездия Стрельца, а шаровые скопления образуют почти сферическую концентричную с ней систему такой же протяжённости в плоскости Млечного Пути. [471] Солнце, согласно модели Шепли, находится на расстоянии 50 000 световых лет от центра Галактики. В дальнейшем шкала галактических расстояний была пересмотрена, но общая схема строения Галактики подтверждена.

§225. Эмми Нётер (1918) доказала теорему, что каждой непрерывной симметрии физической системы соответствует некоторый закон сохранения: однородности времени соответствует закон сохранения энергии, однородности пространства соответствует закон сохранения импульса, изотропии пространства соответствует закон сохранения момента импульса, калибровочной симметрии соответствует закон сохранения электрического заряда и так далее. [472] Теорема обычно формулируется для систем, обладающих функционалом действия, и выражает собой инвариантность лагранжиана по отношению к некоторой непрерывной группе преобразований. Если действие инвариантно относительно n-параметрической непрерывной группы преобразований, то существует n независимых законов сохранения. Теорема Нётер формулирует достаточное условие существования законов сохранения. Однако это условие не является необходимым, поэтому могут существовать законы сохранения, не следующие из неё. [473] Известна теорема, формулирующая необходимые и достаточные условия существования законов сохранения. [474] В теоретической физике выражения, стоящие под знаком дивергенций152, называются токами. Если лагранжевы производные равны нулю (выполняются уравнения Эйлера), то дивергенции токов обращаются в нуль. Следствием этого являются дифференциальные законы сохранения.

§226. Энни Джамп Кэннон с коллегами (1918—1924) из Гарвардской обсерватории под руководством Пикеринга создали Каталог Генри Дрейпера (Henry Draper Catalogue, HD), содержащий спектроскопическую информацию о 225 300 ярких звёздах светимостью до 9m, пронумерованных в простом порядке возрастания их прямых восхождений. [475] Каталог был назван в честь астронома Генри Дрейпера, чья вдова пожертвовала деньги на его создание. При подготовке данного каталога первым результатом, который лег в его основу, стал Каталог звездных спектров Дрейпера, подготовленный Пикерингом и опубликованный в 1890 году. [476] Каталог был первой попыткой систематического изучения спектров звёзд. Спектры звёзд были отсортированы по так называемой гарвардской классификации. Эта классификация используется до сих пор и лежит в основе современной астрофизики. Позже были опубликовано добавление – Henry Draper Extension (HDE), содержащее данные о более чем 400 тысяч звёзд. [477]