§204. В 1907—1909 годах немецкий математик Герман Минковский выступил с рядом статей и лекций, где предложил так называемую «геометродинамику» – четырёхмерную математическую модель кинематики теории относительности. [427] В 1909 году вышла его книга «Пространство и время», оказавшая существенное влияние на развитие теории относительности. [428] Минковский (1908) предположил, что импульс света пропорционален показателю преломления материала среды. [429] На практике это означает, что проходящий свет оказывает давление на материал в направлении своего движения. Макс Абрахам (1909) сделал обратное предположение, что свет давит на материал в противоположном направлении). Долгое время физики-экспериментаторы не могли провести эксперимент, который бы подтвердил правильность одной из точек зрения. В 1970-х годах был поставлен опыт на основании которого некоторые физики делают выводы о правильности гипотезы Абрахама. Выяснилось, что наблюдаемое «распухание» воды (которое доказывало верность предположения Минковского), через которую пропускали луч, оказалось результатом стороннего оптического процесса. Китайские физики, ведущим из которых был Вэйлун Шэ (2006), разработали схему эксперимента, позволяющего наконец ответить на старый вопрос. Вместо воды они использовали отрезок оптоволокна длиной около 1,5 миллиметров и шириной в 500 нанометров. [430] Физики рассчитывали, что вес оптоволокна окажется достаточно мал для того, чтобы движение кончика отрезка, вызванного прохождением луча света, можно было заметить. После начала эксперимента камера фотографировала отрезок оптоволокна с частотой 10 снимков в секунду. Анализ фотографий показал, что свет «заставлял» кончик отрезка изгибаться в направлении, противоположном направлению распространения света. Таким образом ученые смогли подтвердить правильность теории Абрахама.
§205. Датский астроном Эйнар Герцшпрунг (1908), анализируя работы Антонии Мори, предложившей деление звёзд по ширине их спектральных линий, заметил, что звёзды с более узкими линиями имели меньшее собственное движение, чем другие иные звёзды по той же спектральной классификации. [431] Он принял это как показатель большей светимости для узко-линейчатых звёзд и вычислил годичный звёздный параллакс для некоторых групп из них, что позволило ему определить их абсолютную звёздную величину. В 1914 году Генри Норрис Рассел, независимо от Герцшпрунга, построил диаграмму, на которой абсолютные величины (собственная яркость) звезд изображены в зависимости от их спектральных типов. [432] На диаграмме логарифм светимости, или абсолютная звездная величина (вертикальная ось), представлена в виде зависимости между спектральным классом (горизонтальная ось) звезд, который обычно лежит в пределах от синего (О) до красного (М). Большинство звезд располагается на так называемой главной последовательности, простирающейся по диагонали от верхней левой части к нижней правой. Красные гиганты находятся в верхней правой части, а белые карлики – в нижней левой. Ныне этот график называется диаграммой Герцшпрунга-Рассела. Ранние версии диаграммы Рассела включали в себя звёзды-гиганты Антонии Мори, звёзды из скопления Гиады и несколько передвигающихся групп, для которых метод движущегося скопления позволял получить расстояния и таким образом определить абсолютную звёздную величину для этих звёзд.
§206. Генриетта Соун Ливитт открыла более 2400 переменных звёзд (преимущественно в Магеллановых облаках на основе снимков, полученных с 1893 года в Арекипской обсерватории, Перу). Свой первый каталог из 1777 переменных звёзд она опубликовала в 1908 году. [433] Изучение цефеид привело её к открытию зависимости между периодом изменения блеска и светимостью звезды, что впоследствии помогло астрономам в измерении расстояний как в нашей Галактике, так и за её пределами. В статье, опубликованной в 1912 году, Левитт исследовала связь между периодами и яркостью выборки из 25 переменных цефеид в Малом Магеллановом Облаке, указав: «Прямая линия может быть легко нарисована между каждым из двух рядов точек, соответствующих максимумам и минимумам, таким образом, показывая, что существует простая связь между яркостью переменных цефеида и их периодами». [434] Она использовала упрощающее предположение, что все цефеиды в пределах небольшого Магелланова Облака находились примерно на одном и том же расстоянии, так что их внутренняя яркость могла быть выведена из их видимой яркости, зарегистрированной на фотографических пластинах, вплоть до масштабного фактора, поскольку расстояние до Магеллановых Облаков было еще неизвестно. Она выразила надежду, что будут измерены параллаксы с некоторыми цефеидами, что в итоге и произошло, и помогло откалибровать ее шкалу период-светимость. Это рассуждение позволило Левитт установить, что логарифм периода линейно связан с логарифмом средней внутренней оптической светимости звезды (которая является количеством мощности, излучаемой звездой в видимом спектре). [435] Левитт также разработала Гарвардский стандарт для фотографических измерений – логарифмическую шкалу, которая упорядочивает звезды по яркости свыше 17 величин. Она первоначально проанализировала 299 снимков от 13 телескопов для того, чтобы построить ее масштаб, который был принят Международным Комитетом фотографических величин в 1913 году. [436]