Феномен моногенного гетерозиса, когда показана зависимость признака от одной аллельной пары, является только одним аспектом теории гетерозиса. По предложению Ф. Добжанского это явление получило название сверхдоминирования. Оно имеет большое значение для эволюционной теории, поскольку демонстрирует преимущество гетерозигот в популяциях. Однако это понятие скорее применимо к адаптивному уровню, поэтому до выяснения генетических механизмов сверхдоминирования рассматривать его как особый вид межаллельных взаимодействий преждевременно.

В живых организмах часто взаимодействуют не только аллели одного гена, но и аллели разных генов, давая самые различные варианты расщепления. Различают три основных типа взаимодействия неаллельных генов.

Комплементарность – взаимодействие разных доминантных аллелей обусловливает появление нового признака.

По типу комплементарности обычно взаимодействуют гены, контролирующие разные этапы одного и того же метаболического пути. Однако для некоторых морфологических признаков биохимический механизм реализации неизвестен.

Эпистаз – один ген подавляет проявление другого, неаллельного ему гена.

Гены, подавляющие действие других генов, называются эпистатическими (или генами-супрессорами). Возможны два варианта эпистаза: доминантный эпистаз – эпистатический ген является доминантным в своей аллельной паре и рецессивный эпистаз – эпистатический ген является рецессивным в своей аллельной паре.

Полимерия – однозначное действие неаллельных генов. Полимерия связана с контролем признака несколькими неаллельными генами. Полигенный контроль весьма широко распространен в генетике. Полимерные гены обычно обозначаются одинаковыми буквами с нижним индексом – А>1, А>2, А>3 и т. д.

Полимерия также встречается в двух вариантах. При кумулятивной полимерии интенсивность признака пропорциональна числу доминантных аллелей среди полимерных генов, а при некумулятивной полимерии разные полимерные гены дублируют друг друга и для проявления признака достаточно наличия одного из доминантных аллелей.

Многочисленные случаи взаимодействия генов заполняют основной объем всех задачников по генетике. В типичном случае при скрещивании дигетерозигот при взаимодействии генов образуются самые различные отношения фенотипических классов в поколениях – 9: 3: 4; 9: 7; 13: 3; 12: 3: 1; 15: 1 и другие. Генетический анализ показывает, что все они являются видоизменением классической менделевской формулы дигибридного расщепления 9: 3: 3: 1. Решение большого количества задач по генетике является необходимым этапом в подготовке студентов, изучающих генетику.

Словосочетание «взаимодействие генов» несколько условно, так как обычно взаимодействуют не сами гены, а их продукты. Однако нельзя согласиться с термином «взаимодействие фенов», который неточно отражает смысл явления. На мой взгляд, в учебной литературе лучше оставить традиционный термин «взаимодействие генов» (аллельных и неаллельных).

4.4. Взаимодействие генотипа и среды

Природа проявления действия генов намного сложнее, чем в описанных выше вариантах. Рассматривая действие генов и их аллелей, необходимо учитывать влияние внешней среды на проявление признаков, а также модифицирующее действие других генов.

Практически не встречается однозначное соответствие между геном и фенотипом. Справедливость этого положения подтверждает явление множественного действия генов – плейотропия, т. е. влияние гена на несколько признаков. Плейотропное действие гена часто зависит от того, на какой стадии онтогенеза он проявляется: чем раньше ген проявляется, тем более выражен его плейотропный эффект. Некоторые генетики считают, что все гены в той или иной степени являются плейотропными.