Рис. 2.1. Структура ДНК


Когда Уотсон экспериментировал с картонными шаблонами азотистых оснований, его осенила блестящая идея: он осознал, что аденин (A) из одной спирали может образовывать химическую связь (пару) только с тимином (T) из другой спирали, тогда как гуанин (G) из одной спирали аналогичным образом соединяется с цитозином (C) из другой. Контуры любой пары оснований, будь то АТ или GC, примерно одинаковы, причем форма одной спирали задает форму другой, а порядок оснований в одной спирали зависит от порядка оснований в другой. При делении клетки двойная спираль расплетается, и каждая половина содержит достаточную информацию, чтобы послужить шаблоном для новой спирали. В результате из одной молекулы ДНК получаются две, то есть гены самовоспроизводятся, передавая наследственные признаки из поколения в поколение.


Рис. 2.2. Белки


Структура ДНК подсказала, как гены должны копироваться и передаваться, но не продемонстрировала их участия в синтезе белков. Дело в том, что каждая молекула ДНК – это длинная цепочка «первоэлементов», в состав которых входят четыре типа азотистых оснований. Но белки – это совершенно иные цепочки, состоящие из аминокислот, и химические связи в них тоже абсолютно другие. Исключительное разнообразие белков обусловлено тем, что двадцать аминокислот, входящих в их состав, сильно отличаются друг от друга по химическом свойствам. Их длина и порядок в каждой белковой цепочке уникальны, и, что удивительно, белок содержит информацию, необходимую для правильного свертывания цепочки, чтобы та приобретала нужную форму и правильно функционировала. Крик догадался, что порядок оснований в ДНК кодирует порядок аминокислот в белке, но оставался вопрос: каким образом?


Рис. 2.3. Транскрипция: копирование гена из ДНК на матричную РНК


Ученые бились над этой проблемой более десяти лет. Оказалось, что участок ДНК, содержащий ген, копируется на схожую молекулу, именуемую матричной РНК (мРНК), которая доставляет генетическое «сообщение» туда, где оно требуется. РНК (рибонуклеиновая кислота) отличается от ДНК (дезоксирибонуклеиновой кислоты) тем, что имеет дополнительную гидроксильную группу в сахарном «кольце»[6]. В РНК тоже четыре азотистых основания, но вместо Т находится очень похожее основание урацил (U), которое образует пару с А.

Как сделать двадцать типов аминокислот, имея четыре типа оснований? Все равно что прочесть длинную последовательность инструкций, записанных незнакомыми буквами. Оказалось, что основания считываются группами (кодонами) по три за раз. Способ их считывания, предсказанный Криком, связан с еще одной молекулой РНК, именуемой транспортной РНК (тРНК). С одного конца к ней прикрепляется нужная аминокислота, а с другого – группа из трех оснований (антикодон). Антикодон и кодон образуют пары оснований, такие же, как возникающие между двумя спиралями ДНК. Следующий кодон распознается другой тРНК, которая подносит его вместе с соответствующей аминокислотой, и т. д.

Следующее крупное открытие заключалось в том, что все это происходит не само собой. Клеточные биологи открыли органеллы, где считываются мРНК и синтезируются белки. В каждой клетке (и у бактерии, и у человека) есть тысячи таких крошечных частиц. Но по молекулярным меркам они огромны. В каждой из них находится примерно пятьдесят белков и три больших участка собственной РНК (это уже РНК третьего типа, существующая наряду с мРНК и тРНК). Сначала ученые называли эти органеллы рибонуклепротеиновыми частицами микросомального порядка, поскольку они состоят одновременно из РНК и белков и при этом отграничены от клеточных органелл, именуемых микросомами. Но такое название получалось слишком пространным, поэтому на одной конференции в конце пятидесятых Говард Динцис назвал их рибосомами – с тех пор это название и закрепилось. Именно Динцис первым определил, в каком направлении происходит синтез белковой цепочки. Диву даюсь, но, проработав тридцать лет в сфере биологии, я ничего не слышал о Динцисе и его работах. Когда в 2009 году мы с ним в конце концов повстречались в Университете Джона Хопкинса, куда меня пригласили прочитать названную в его честь лекцию, Динцис все еще по праву гордился, что сам придумал это слово.