Насколько эффективны персональные прогнозы? Криминалисты и спецслужбы по понятным причинам не расскажут вам, окупается ли профилирование в их работе. Да и влияние компании Cambridge Analytica на выборы президента США скорее всего было сильно преувеличено.

Оценить эффективность инфоцыган и хакерской «социальной инженерии» легче, поскольку тут есть статистика потерь – и они огромны. В отчёте ФБР о кибер-преступности за 2018 год на первом месте по потерям находится Business Email Compromise ($1,297,803,489), на втором месте – Confidence Fraud/Romance ($362,500,761). В обоих случаях речь идёт о персонально-заточенных атаках: деньги выманивают либо через фишинговые письма от фальшивых бизнес-партнёров, либо через романтическую переписку с немолодыми одинокими женщинами [17].

Что касается эффективности рекомендательных технологий, она зависит от многих параметров. В 2009 году сервис проката фильмов Netflix наградил призом в миллион долларов разработчика, чей алгоритм улучшил точность рекомендаций компании на 10%. Однако они не стали внедрять этот алгоритм, потому что перешли на другую бизнес-модель: вместо почтовой рассылки DVD занялись интернет-стримингом, а там победивший алгоритм был невыгоден.

С другой стороны, история «Имхонета» показывает, что создание подробных вкусовых профилей – процесс долгий, затратный, требующий активного участия пользователя и не гарантирующий практического результата (человек может смотреть совсем другие фильмы просто «за компанию»). Можно предположить, что для массового сервиса выгоднее создавать некие групповые прогнозы вместо персональных.

И действительно, Netflix с 2016 года использует гибридный подход к рекомендациям. На основе коллаборативной фильтрации выделено около 2.000 кластеров – сообществ людей со сходными вкусами. А фильмы в каталоге Netflix размечены на 27.000 микро-жанров (одних только страшилок про зомби – более ста видов). Сопоставляя кластеры и микро-жанры, система создаёт новые рекомендации для целых групп. Более того, Netflix начал выпускать собственные фильмы, используя всю собранную «вкусовую аналитику», чтобы предсказывать наиболее востребованные жанры для съёмки.

Дело о Минотавре


Первая часть этой книги должна была называться «Древние методы предсказаний». Вроде логично: рассказ о прогнозировании нужно начинать с далёкого прошлого, там же полно всяких чудес на эту тему. Вот смотрите, что писал Тит Лукреций Кир, живший в I веке до нашей эры:


«Не мудрено, наконец, что двигаться призраки могут,

Мерно руками махать да и прочие делать движенья,

Как это часто во сне, нам кажется, делает образ.

Что же? Лишь первый исчез, как сейчас же в ином положеньи

Новый родится за ним, а нам кажется – двинулся первый.

Скорость, с которой идёт эта смена, конечно, огромна:

столь велика быстрота и столько есть образов всяких…»


Очевидно, что перед нами – предсказание кинематографа, сделанное более двух тысяч лет назад. И можно набросать ещё сотню страниц подобных историй, свидетельствующих о провидческом даре разнообразных нострадамусов прошлого.

Но если нам хочется видеть футурологию как нечто близкое к точным наукам, придётся признать, что многие древние предсказания и их сбыча сами по себе являются мифами, и мы не можем анализировать их всерьёз. А когда речь идёт о реальных исторических событиях, «сбывшиеся» пророчества чаще всего представляют собой «ошибку выжившего» на фоне многих несбывшихся. Тот же Лукреций в своей огромной поэме «О природе вещей» написал много странного о призраках: кажется, он пытался объяснить и световые волны, и сны, и работу памяти, и все прочие нематериальные явления с помощью «маленьких частиц». А я вытащил лишь одну короткую цитату оттуда, не показывая вам все остальные фантазии из этого произведения.