Что позволяет им чувствовать его приближение? Малые колебания грунта, увеличение статического электричества, воздействие инфразвуковых волн? Точно неизвестно. Возможно, все факторы вместе. А тигры, слоны, аллигаторы просто слышат инфразвук и даже могут общаться с его помощью!
Хотя человеку и большинству животных инфразвук и не слышен, он всё же действует на внутренние органы и системы организма и вызывает чувство тревоги. Этот эффект пытались использовать в фильмах ужасов, но потом запретили, так как инфразвук может привести к неконтролируемой панике среди зрителей. При большой интенсивности инфразвук ощущается как вибрация в теле, вызывая недомогания (тошноту, головокружение, вялость) и даже чувство острой боли. Наиболее негативное влияние инфразвук оказывает на нервную систему и работу сердца. Есть предположение, что инфразвук, возникающий от шторма в океане, увеличивает число автокатастроф и сердечных заболеваний на расстояниях в тысячи километров!
Инфразвук при длительном воздействии вызывает состояние усталости. Присутствием инфразвука в шумах автострад и рёве взлетающих самолётов может объясняться синдром усталости у живущих поблизости людей.
Ультразвук имеет частоты, превышающие верхний порог звукового диапазона, то есть выше 20 тысяч (а для пожилых людей – выше 12 тысяч) герц.
Многие животные могут воспринимать ультразвук, например кошки, собаки, кузнечики, летучие мыши, бабочки. Дельфины и другие морские животные для поисков косяков рыб, для ориентировки в мутной воде используют ультразвуковую локацию, то есть посылают ультразвуковой сигнал, а затем ловят сигнал, отражённый от препятствия. По времени запаздывания отраженного сигнала они судят о расстоянии до препятствия, а по изменению частоты сигнала – о скорости движения этого препятствия (этот же принцип применяют «гаишники» для определения скорости вашего автомобиля). Почему дельфины предпочитают зрению ультразвуковую локацию? Потому что свет в воде довольно сильно поглощается (радиус видимости составляет несколько метров), а ультразвук с частотой 50 тысяч герц распространяется на несколько километров! Летучие мыши и другие ночные животные благодаря ультразвуковой локации ориентируются при ночном полёте. В медицине тоже широко применяется ультразвуковая локация – это знакомая вам процедура УЗИ.
Как измеряют волны
Поговорим немного подробнее о волнах. Это пригодится нам не только в связи со звуком, но и при разговоре об электромагнитном излучении и свете.
Чтобы нагляднее представить себе звуковую волну, воспользуемся аналогией. Характер движения частиц среды в бегущей волне напоминает работу «семафорного телеграфа», применявшегося в конце XVIII – начале XIX века. Между городами в области прямой видимости возводили специальные башни с мачтами. К концу мачты прикреплялись подвижные линейки, которые могли принимать различные положения, изображая таким образом все буквы и даже некоторые слова. Работник на каждой башне наблюдал за соседней башней в подзорную трубу и воспроизводил на своей мачте те же самые движения линеек, которые совершал его предшественник, но с небольшой задержкой во времени.
И так сигнал «бежал» от башни к башне. От Парижа до Бреста депеша передавалась всего за 7 минут! Так и в бегущей звуковой волне частицы в каждой точке среды повторяют те же самые движения, которые совершают частицы «на первой башне», то есть движения источника звука, но с некоторым запаздыванием, время которого определяется расстоянием до источника и скоростью волны.
Рис. 1. Пример графика зависимости смещений частиц среды от своих равновесных положений в один и тот же момент времени в зависимости от расстояния до источника звука