При этом по логике, заключённой в выводе Кухлинга, в случае нулевого радиуса ускорение Кориолиса также должно быть равно нулю. Однако в реальной действительности в момент перехода через центр вращения ни направление, ни абсолютная величина ускорения Кориолиса не изменяются (см. гл. 8).

4.2. Аналитический вывод силы Кориолиса Р. Фейнмана. Вывод силы и ускорения Кориолиса через мерный радиан

Фейнман Р.


Аналитический вывод Фейнмана отличается от приведённых выше геометрических выводов явления Кориолиса тем, что Фейнман определяет ускорение и силу Кориолиса непосредственно через уравнение динамики вращательного движения, минуя геометрические построения.

Ниже приведена фотокопия оригинального текста из работы «ФЕЙНМАНОВСКИЕ ЛЕКЦИИ ПО ФИЗИКЕ. 2. ПРОСТРАНСТВО. ВРЕМЯ. ДВИЖЕНИЕ», стр. 78, 79; Р. Фейнман, Р. Лейтон, М. Сэндс.








Как видно из вывода Фейнмана, для определения силы Кориолиса в классической физике необходимо поддерживать угловую скорость вращающейся системы за счет «обычной» внешней боковой силы, которая естественно воздействует и на любой предмет на радиусе системы. Фейнман, наверное, оговорился, но в приведённом выше фрагменте он утверждает, что это и есть сила Кориолиса, которая и толкает тело в бок (см. выше). На самом деле в классической интерпретации поворотного движения в бок тело толкает обычная поддерживающая сила. А силой инерции Кориолиса называют ответную реакцию на действие поддерживающей силы.

Однако в этой ошибке Фейнмана нет ничего удивительного, т.к. в классической физике Ньютона нет ничего более странного, чем модель явления Кориолиса. Она настолько странная, что в ней запутались даже такие известные физики, как Фейнман.

Первая странность заключается в том, что сила Кориолиса определяется в классической физике исключительно только при неизменной угловой скорости, как реакция на строго определённую поддерживающую вращение силу. В природе условие неизменности угловой скорости практически никогда идеально не соблюдается. Более того в естественном виде явление Кориолиса наблюдается только в таких неидеальных системах.

Один из примеров проявления силы Кориолиса в естественном виде приведён самим Фейнманом. Это человек с гантелями в руках, вращающийся на вращающемся столике. Конечно же, это не совсем природный пример, но он естествен тем, что в нём нет полной поддерживающей силы, которая искусственно поддерживала бы угловую скорость на неизменном уровне, как это происходит в классической модели явления Кориолиса.

На этом примере, выраженном намного контрастнее природных вращающихся систем, но не отличающемся от них принципиально, мы и покажем всю абсурдность классической модели явления Кориолиса. Начнём с того, что выясним, какую именно силу классическая физика принимает за силу Кориолиса и почему теоретически она в классической физике привязана к постоянной угловой скорости вращающейся системы, несмотря на то, что в естественных условиях таких систем практически не существует.

Есть все основания полагать, что эта привязка вызвана вовсе не только и не столько соображениями математического упрощения вывода силы Кориолиса. Скорее всего, это связано с непониманием природы явления Кориолиса, в котором при неполной компенсации угловой скорости явственно проявляется и неизвестная классической физике истинная сила Кориолиса—Кеплера. При этом естественно появляется необходимость задуматься и об истинной величине силы и ускорения Кориолиса.

Фейнман правильно отмечает, что тело вращающегося человека при сгибании им рук с гантелями не изменяет свой момент инерции (приведённое сопротивление, см главу 3.4.), т.к. радиус самого тела остаётся при этом постоянным. Но если при сгибании рук