Таким образом, две половинки классического ускорения Кориолиса это одна и та же физическая величина, вдвое меньшая своего классического значения.
При этом напряжение Кориолиса по абсолютной величине действительно соответствует классической силе Кориолиса (см. гл. 3.4.3 и настоящую 4.1.). Однако половина этого напряжения не реализуется в новое движение тела. Она компенсируется истинной силой Кориолиса—Кеплера, а энергия этого напряжения рассеивается среди элементов радиуса, тела и окружающей среды. В классической физике нет истинной силы Кориолиса—Кеплера. Поэтому для того, чтобы оправдать полную энергию реального напряжения Кориолиса и была придумана сказка про удвоенное ускорение Кориолиса (2ωV).
***
Идентичность приращения линейной скорости переносного вращения по абсолютной величине и относительной скорости по направлению можно показать и аналитически. Приращение радиальной скорости относительного движения по направлению равно:
ΔVr = Vr * Δα = Vr * ω * Δt
Это выражение соответствует третьему члену выражения (66.4) у Матвеева.
Произведение (Vr * Δt) в выражении для (ΔVr) есть не что иное, как изменение радиуса переносного вращения (Δr). Тогда выражение для (ΔVr) можно записать в виде:
ΔVr = Vr * Δα = Vr * ω * Δt = (Vr * Δt) * ω = Δr * ω
Но (Δr * ω) есть не что иное, как прирост линейной скорости переносного движения в связи с изменением радиуса переносного вращения:
ΔVл = r>2 * ω – r>1 * ω = (r>2 – r>1) * ω = Δr * ω
Отсюда:
ΔVr = ΔVл
Аналогичным образом можно показать, что прирост абсолютной скорости в направлении линейной скорости переносного вращения по абсолютной величине есть не что иное, как прирост радиальной скорости относительного движения по направлению.
ΔVл = Vn>2 – Vn>1 = ω * r>2 – ω * r>1 = ω * Δr = ω * (Vr * Δt) =
= Vr * (ω * Δt) = Vr * Δα = ΔVr
То есть:
ΔVл = ΔVr
Следовательно, ускорение Кориолиса (w>к) можно выразить через знак полного физического соответствия (≡), обозначающий не просто математическое равенство, а одну и ту же физическую величину. Если такого знака нет в математике, то его следует ввести, поскольку подобных ситуаций в существующей математической физике предостаточно.
w>к = (ΔVл / Δt ≡ ΔVr / Δt) = ω * Vr
Как это ни парадоксально этот же самый математический вывод в классической физике приводится как подтверждение классической модели поворотного ускорения, а не как выражение одного и того же поворотного ускорения через взаимосвязь углового и линейного перемещения. Однако даже математическое равенство означает, прежде всего, идентичность физических величин количественно, но никак не их кратность.
Кроме того, полное совпадение математических формул ускорений, в которых присутствуют одни и те же базовые физические величины в соответствии с законом сохранения истины (см. гл. 2) должно, прежде всего, свидетельствовать о том, что речь идет об одной и той же физической величине. Следовательно, в классическом ускорении Кориолиса одна и та же физическая величина учтена дважды.
Для всех без исключения криволинейных движений в природе существует только один физический механизм изменения движения по направлению (см. гл.3.2). В этом механизме можно отыскать любые элементы поворотного движения. Даже в равномерном вращательном движении проекция вектора линейной скорости, изменяющегося как по величине, так и по направлению, на радиус так же, как и в поворотном движении образует радиальное ускоренное движение.
Однако при этом никто не утверждает, что центростремительное ускорение состоит из двух независимых ускорений – ускорения по изменению направления линейной скорости вращательного движения и поступательного радиального ускорения. Нет никаких оснований утверждать это и в отношении поворотного ускорения, которое, так же, как и ускорение вращательного движения формируется из элементарных отражений.