Что же такое «время падения тела?» Это время, прошедшее между моментом освобождения тела (отпусканием груза) и его приземлением (прилунением и т. д.). Определим его. По закону всемирного тяготения на груз и на саму планету (Землю, Луну, астероид, и т. д.) действуют одинаковые по величине и направленные друг к другу силы:

F = γ * M * m / r >2,

где γ – гравитационная постоянная; М, m – массы планеты и груза;

r – расстояние между центрами масс этих тел.

Ускорение груза: a>гр = F/m, ускорение планеты: a>пл = F/M (ускорения m и M для простоты считаем постоянными). Скорости груза и планеты:

Vгр = a>гр t; Vпл = a>пл t,

где t – время.

Скорость сближения этих тел (скорость падения): Vпад = (а>гр>пл) t, при этом средняя скорость падения:

Vпад. ср = Vпад. / 2

где Vпад. – скорость приземления тела. Время падения (оба тела приближенно считаем точками):

t = 2r / Vпад.

Подставляя Vпад, получим:

t = корень (2 * r>3 / (γ * (M + m))

Запомните эту формулу – вот истинное время падения одного тела на другое. Так как в знаменателе под корнем сумма масс тел, то при постоянной массе планеты М чем больше масса груза m, тем меньше время падения, т. е. тем быстрее тело падает. Уж если мы хотим быть корректными, то надо говорить, что ускорение одновременно падающих в пустоте тел одинаковое, но при падении порознь тяжелое тело даже в пустоте шлепнется с высоты быстрее, чем легкое, согласно Аристотелю. Потому что сама планета, или пусть даже астероид, на который падает тело, будет тем быстрее двигаться навстречу, чем тяжелее (массивнее) падающее тело.

Так что не стоит слепо верить мнениям, даже авторитетным. Правильно говорил Козьма Прутков, что если на клетке слона прочтешь «буйвол», не верь глазам своим!»

Нам же кажется более очевидной версия Галилея, в соответствии с которой ускорение падения легких и тяжелых тел не зависит от их массы, как при синхронном падении, так и при раздельном падении.

Земля в поле тяготения пробных тел действительно движется навстречу им, так же, как и они движутся навстречу Земле в ее поле тяготения. Ускорение Земли в поле тяготения пробных тел зависит от массы пробных тел. Поэтому точка встречи каждого из этих тел с поверхностью Земли при бросании их по отдельности будет изменять свое положение в пространстве в зависимости от массы пробных тел. Соответственно будет изменяться и время встречи пробных тел разной массы с поверхностью Земли при их раздельном падении.

Однако в соответствии с законом всемирного тяготения скорость падения и у гири и у перышка в поле тяготения Земли будет одинаковая при любой последовательности бросания этих тел к Земле с одинаковой высоты. При этом подтверждением этого факта явиляется не одинаковое время встречи пробных тел разной массы с Землей, а одинаковое время прохождения ими одинаковых расстояний в поле тяготения. Поэтому под словами Галилея «совершенно одинаково», раз уж ему отводят такую историческую роль, следует понимать одинаковую скорость падения пробных тел в поле тяготения Земли.

Галилей полагал, что определяет скорость падения на одинаковом по высоте отрезке для каждого из бросаемых тел. Именно поэтому по одинаковому времени падения пробных тел на Землю Галилей вправе был сделать вывод и об их одинаковой скорости падения. Другого способа определения скорости просто не существует. Причем совершенно очевидно, что Галилей имел в виду именно скорость падения пробных тел:

«…Получаемое противоречие снимается одним утверждением – вес предмета не влияет на скорость свободного падения».

При увеличении массы одного из взаимодействующих тел его ускорение в поле тяготения другого неизменного тела не изменяется, т.к. сила тяготения, действующая на первое тело, изменяется, пропорционально его же массе. Поэтому акцентирование внимания на теоретической разнице времени встречи пробных тел разной массы с Землей при рассмотрении специфики закона всемирного тяготения очень напоминает разговор «про Фому» и «про Ерему», уводящий читателей в сторону от главного вывода, сделанного Галилеем из своих пусть несовершенных в метрологическом отношении опытов.