F>упр. = – k * x,

где:

x – удлинение;

k – модуль продольной упругости или модуль Юнга.

Однако это соотношение справедливо для равномерно деформированного тела, в котором установившаяся статическая деформация равномерно распределена по его объёму для постоянной силы, вызывающей деформацию. При движении под действием постоянной силы с постоянным ускорением деформация и силы упругости распределяются неравномерно по длине тела. Если учесть, что в реальном взаимодействии сила в центре зоны деформации не постоянная, а изменяется пропорционально удлинению, то индивидуальная сила, приложенная к каждому массовому элементу в каждом поперечном сечении тела, оказывается пропорциональной квадрату удлинения. Покажем это графически на Рис. 1.2.3.

Разобьем два взаимодействующих тела, представляющие собой цилиндрические стержни с одинаковой для простоты массой и одинаковыми геометрическими размерами на равные линейные части по длине цилиндров. Пусть для простоты таких частей будет три в каждом теле. Тогда любая сила, действующая на такие тела, будет пропорциональна (кратна) трём.

Пусть, исходя из нашего разбиения, при разгоне тел к ним условно приложена внешняя постоянная по величине и направлению сила равная (3F). Во время разгона к каждому элементу взаимодействующих тел будут приложены силы, показанные на рисунке (1.2.3.). На рисунке показаны также силы, действующие между элементами.

Мы не можем количественно оперировать с нулевыми или бесконечно малыми силами и удлинениями. Поэтому за точку отсчёта условно примем удлинение (х = ±1) и силу (F = 1F). Эти параметры будут соответственно обозначать начало сжатия и конец расширения зоны деформации (см. Рис. 1.2.3.). При этом численные значения удлинения и силы на этих стадиях могут быть сколь угодно малыми.

Целесообразность их малости для практических расчётов покажет опыт. Тогда эта величина может быть принята за единичное удлинение, а сила, вызывающая её – за единичную силу. Количество сечений рассчитывается как частное от деления максимальной силы на минимальную. При этом наибольшее удлинение также будет кратно этому соотношению

И ещё одно предварительное пояснение. Сила взаимодействия образуется в самом центре зоны деформации. Эту часть зоны деформации для простоты будем условно считать несоизмеримо малой по сравнению с деформацией, распространяющейся по длине тел. Тогда за удлинение, участвующее в расчётах силы, действующей на внешних концах и в центре зоны деформации тел, будем принимать только удлинение самих тел.

Но как бы ни была мала центральная зона деформации, она также подчиняется закону Гука. А поскольку она образуется из того же материала, из которого состоят и сами тела, то сила которая в ней образуется также меняется пропорционально удлинению. Таким образом, опуская это удлинение в общем удлинении тел, мы, тем не менее, будем учитывать вызываемое им изменение силы в центре взаимодействия.

Итак, смотрим рисунок:


Рис. 1.2.3


Как видно из рисунка в центре зоны деформации сила изменяется пропорционально удлинению в нашем случае в (х = 3) раз, а затем к краям зоны деформации ещё во столько же раз, т.е. всего в ((х = 3)> 2) раз. То есть сила инертного взаимодействия при движении тел с переменным ускорением под действием изменяющейся силы пропорциональна квадрату удлинения зоны деформации.

В современной физике считается, что силы упругости имеют электрическую природу. Но силы Кулона как раз и имеют квадратичную зависимость от расстояния. А вот почему квадратичная зависимость кулоновских сил от расстояния превращается в линейную зависимость сил упругости от расстояния, классическая физика не поясняет. Покажем, как это может быть согласовано.