«В неинерциальных системах можно ускорить тело простым изменением состояния движения системы отсчета. Рассмотрим, например, неинерциальную систему отсчета, связанную с автомобилем. При изменении скорости его относительно поверхности Земли в этой системе отсчета все небесные тела испытывают соответствующие ускорения. Ясно, что эти ускорения не являются результатом действия на небесные тела каких-либо сил со стороны других тел. Таким образом, в неинерциальных системах отсчета существуют ускорения, которые не связаны с силами такого же характера, какие известны в инерциальных системах отсчета. Благодаря этому первый закон Ньютона в них не имеет смысла. Третий закон Ньютона в отношении взаимодействия материальных тел, вообще говоря, выполняется. Однако, поскольку в неинерциальных системах отсчета ускорения тел вызываются не только „обычными“ силами взаимодействия между материальными телами, проявления третьего закона Ньютона настолько искажаются, что он также утрачивает ясное физическое содержание».

Силы, которые проявляются в неинерциальной системе отсчета, в отличие от «обычных» сил Матвеев определяет как силы «особой природы». При этом Матвеев отмечает, что этот путь был выбран не им, а сложился исторически и предлагает свой альтернативный вариант:

«При построении теории движения в неинерциальных системах в принципе можно было бы идти по пути коренного изменения представлений, выработанных в инерциальных системах, а именно можно было бы принять, что ускорения тел вызываются не только силами, но и некоторыми другими факторами, которые ничего общего с силами не имеют. Однако исторически был выбран иной путь – эти другие факторы были признаны силами, которые находятся с ускорениями в таких же соотношениях, как и обычные силы. При этом предполагается, что в неинерциальных системах, так же как и инерциальных, ускорения вызываются только силами, но наряду с „обычными“ силами взаимодействия существуют еще силы особой природы, называемые силами инерции».

Таким образом, в современной физике в неинерциальных системах отсчёта наряду с «обычными» силами взаимодействия необходимо учитывать силы инерции, которые Матвеев увязывает с ускоренным движением неинерциальной системы отсчета относительно инерциальной.

«Существование сил инерции обусловливается ускорением движения неинерциальной системы отсчета относительно инерциальной. Силы инерции берутся такими, чтобы обеспечить в неинерциальной системе отсчета те ускорения, которые фактически имеются, но обычными силами взаимодействия объясняются лишь частично».

При этом Матвеев, так же как и Жуковский отмечает, что силы инерции, вводимые в неинерциальных системах отсчета в математической модели теории движения, являются фиктивными силами, т.е. реально несуществующими:

«Введение этих сил в уравнения движения, использование их при объяснении физических явлений и т. д. в неинерциальных системах координат является правильным и необходимым. Однако использование понятия сил инерции при анализе движений в инерциальных системах координат является ошибочным, поскольку в них эти силы отсутствуют».

С точки зрения современной физики, связав неинерциальную систему отсчёта с ускоренно движущимся телом можно, прибавив к нему силу инерции, получить условие равновесия для тела в неинерциальной системе отсчёта. В этом случае ускорение движения тела определяется, как ускорение неинерциальной системы отсчёта относительно инерциальной системы без учета сил инерции. Если же тело движется ещё и относительно неинерциальной системы отсчета, то задача значительно усложняется.