Но это и есть не что иное, как врождённое свойство материи преобразование напряжение-движение. Причём есть все основания считать, что это базовое для явления инерции свойство имеет механическую природу, т.к., исходя из материалистических позиций, все поля любых из известных видов взаимодействий должны передавать свои воздействия посредством своих материальных носителей, т.е. механически.
Все законы Ньютона тесно взаимосвязаны между собой, главным из которых на наш взгляд является второй закон Ньютона, т.к. именно он определяет все действия в природе, в которых и рождаются все силы во Вселенной. Из него легко получить, в том числе и закон взаимодействия в виде его меры – энергии. Для этого достаточно умножить второй закон Ньютона на скорость и время, которым энергия и пропорциональна:
F * V * t = m * a * V * t = E
При этом первый закон Ньютона не является самостоятельным законом. Это всего лишь следствие из второго закона Ньютона в отсутствие силы (F = 0). А раз нет силы, то нет и явления инерции. На нет, как говорится и суда нет. Третий же закон Ньютона свидетельствует лишь об одинаковом для взаимодействующих тел скалярном напряжении в зоне упругой деформации взаимодействия.
Как мы только что выяснили выше, сила не может никуда двигаться, т.к. она исчезает по мере её превращения в движение, т.е. сила – это величина скалярная. Но в классической физике нет скалярной силы, как собственно и обозначающего её термина. Поэтому здесь под напряжением мы понимаем скалярную силу, а вовсе не классическое напряжение, отнесённое к площади. А для определения силы, приходящейся на единицу площади поверхности или сечения вполне достаточно существующего термина давление.
Конечно, напряжение в зоне деформации в процессе взаимодействия изменяется. Оно возрастает на первом этапе взаимодействия и разряжается на втором его этапе. Но в каждый момент времени оно остаётся одинаковым для каждого взаимодействующего тела, подобно скалярному напряжению внутри одного и того же сосуда, давление в котором успевает равномерно распределиться по всему его объёму, даже если его объём изменяется. Однако есть основания полагать, что в динамике – силы действия и противодействия всё-таки могут быть не равны.
В сторону меньшего тела, которое движется быстрее, напряжение взаимодействия разряжается быстрее, чем в сторону большего тела. Поэтому при выравнивании напряжения массовые элементы области деформации воздействуют на меньшее тело с большей скоростью, чем предписывает закон сохранения импульса и чем на бОльшее тело, а также с большей силой, чем предписывает третий закон Ньютона. При этом, как будет показано ниже, в любом взаимодействии может возникать эффект «безопорного» движения всей системы в сторону меньшего тела.
Однако этот эффект экспериментально обнаружить очень сложно. Напряжение тут же превращается в движение тел. При этом общее внутреннее напряжение тут же выравнивается по всему его объёму. Именно поэтому мы и вынуждены в расчёте взаимодействий использовать не напряжение на текущей границе каждого тела с зоной деформации, а общее усреднённое напряжение всей текущей зоны деформации.
А теперь опять же в плане «осознания знания» уточним понятие силы из второго закона Ньютона.
Материя является основным вещественным объективным инвариантом природы, которая никуда не исчезает и не возникает из ниоткуда. Изменяются только её свойства, что и обеспечивает всё многообразие состояния материи и многообразие явлений природы. Поэтому не совсем корректно массу, как меру материи называть неким безликим коэффициентом пропорциональности свойств материи. Масса это скорее фундаментальная константа для каждого конкретного замкнутого взаимодействия.