. Это составляет примерно 1/300 часть ускорения свободного падения g. Значит, на тело массы т, находящееся на экваторе, действует центробежная сила инерции, равная mg/ЗОО и направленная от центра, т. е. по вертикали вверх. Эта сила уменьшает вес тела по сравнению с силой притяжения Земли на 1/300 часть».
Как и в задаче Зоммерфельда, приведенной выше, для уменьшения силы тяготения, действующей на тело центробежная сила инерции должна действовать именно на то же самое тело, на которое действует и сила тяготения. Причём, если у Зоммерфельда об этом открыто не говорится, хотя однозначно вытекает из логики физических взаимодействий, то у Ландсберга об этом сказано открытым текстом:
«Значит, на ТЕЛО массы т, находящееся на экваторе, действует центробежная сила инерции…».
Можно конечно сослаться на то, что речь идет о неинерциальной системе отсчета и центробежная сила в данном случае является фиктивной. Но как фиктивная сила может реально уменьшить вес вовсе не ответного, а прямого тела, в какой бы то ни было системе?! Очевидно, только реально компенсируя силу тяготения в центре масс прямого тела. Иначе никакого уменьшения веса не получится.
Поскольку дальнодействия не существует, то надо полагать, что поле тяготения – это вполне материальная среда. Но если материальная среда заставляет двигаться небесные тела навстречу друг другу, следовательно, она реально воздействует на каждое тело, противодействуя реальным факторам, препятствующим этому воздействию при вращении тел. Таким реальным фактором и является центробежная сила инерции, реально воздействующая на те же тела, противодействуя реальной силе тяготения или реальной силе упругости связующего физического тела при механически связанном вращении.
Р. Фейман, Р. Лейтон, М. Сэндс, ФЕЙНМАНОВСКИЕ ЛЕКЦИИ ПО ФИЗИКЕ, 2. ПРОСТРАНСТВО. ВРЕМЯ. ДВИЖЕНИЕ, стр. 78,79:
«Когда мы держим гантели горизонтально, то никакой работы не производим. Выпрямляя руки в стороны и сгибая их, мы тоже не можем произвести никакой работы. Это, однако, верно только, пока нет никакого вращения! При вращении же НА ГАНТЕЛИ действует центробежная сила. Они стремятся вырваться из наших рук, так что, сгибая во время вращения руки, мы преодолеваем противодействие центробежной силы. Работа, которая на это затрачивается, и составляет разницу в кинетических энергиях вращения. Вот откуда берется этот добавок».
Обратите внимание, что и здесь прослеживается, как минимум словесная путаница, из которой абсолютно неясно, что к чему приложено и, что есть фиктивное, а, что реальное. Фейнман чётко указал, что центробежные силы действуют на гантели. И это не случайно. Иначе, двигая гантели, мы просто не совершили бы никакой работы или совершали бы её безо всяких гантелей, двигая саму силу, что является явным абсурдом, т.к. силы вне материи не существуют. Таким образом, опять налицо смешение физического и математического понятия силы инерции, что свидетельствует, на наш взгляд, скорее об отсутствии ясного определения силы инерции в современной физике, чем о его наличии, а значит, наверное, и об отсутствии ясного понимания явления инерции.
Можно привести еще множество примеров двойственного подхода к понятию силы инерции и до бесконечности спорить, о какой системе отсчета идет речь и является ли сила инерции фиктивной или реальной в каждом конкретном случае. Однако однозначный ответ о природе сил инерции у классиков теоретической механики найти вряд ли удастся.
Среди современных авторов также нет четкого представления о природе силы инерции, впрочем, как и о природе «обычных» сил. Например, Н. В. Гулиа, являющийся ярым сторонником фиктивности сил инерции независимо от систем отсчета, в которых они рассматриваются в своей книге «Удивительная физика» в главе «Инерция: сила или бессилие?» противореча самому себе, так же дает двойственную оценку силе инерции.