Может возникнуть вопрос, зачем так подробно останавливаться на понятии инерциальной системы. В действительности, как мы увидим в дальнейшем, в этой системе отсчета законы механики наиболее просты: поэтому всегда приятно, когда можешь считать свою систему отсчета инерциальной…

2. Сила и инерция

Некоторые уточнения по поводу ускорения

В повседневной речи ускорение означает увеличение скорости. С точки зрения физика это не всегда верно по двум главным причинам:

• Ускорение – это алгебраическая величина, то есть оно может быть положительным и отрицательным, в зависимости от того, увеличивается скорость или уменьшается. Физик никогда не скажет «замедление», для него речь идет об «отрицательном ускорении»… То есть машина, которая тормозит, испытывает ускорение!

• Еще важнее то, что скорость представляет собой вектор, то есть стрелку, направление которой указывает направление траектории (например, на север), а длина указывает величину скорости (например, 50 км/ч обозначается стрелкой длиной 50 мм).


Однако физик считает, что ускорение наступает тогда, когда меняется вектор скорости: то есть когда меняется скорость, но и когда меняется направление траектории.

Например, машина, которая поворачивает налево, испытывает ускорение, даже если ее скорость (50 км/ч) не меняется: зато меняется направление вектора скорости.

Итак, необходимо запомнить два очень разных влияния ускорения:

• Если ускорение параллельно траектории, оно меняет скорость, но не направление машины. В этом случае ускорение называется тангенциальным (➙ рис. 1.5).


Рис. 1.5 – Векторы скорости и ускорения во время торможения.

Машина тормозит: с одной стороны стрелка вектора скорости v>→; становится все короче, с другой стороны тангенциальное ускорение a>→;>t направлено назад.


• Если ускорение перпендикулярно траектории движения, оно меняет направление машины, но не меняет ее скорость: в этом случае ускорение называют центростремительным (➙ рис. 1.6).

Конечно, может быть и так, что оба ускорения действуют одновременно, меняя скорость и направление.


Рис. 1.6 – Векторы скорости и ускорения во время поворота.

Машина поворачивает влево: с одной стороны вектор скорости v>→; все больше склоняется влево, с другой стороны вектор нормального ускорения a>→;>n направлен влево.


ВЕЛИЧИНА УСКОРЕНИЯ

Тангенциальное ускорение показывает изменение скорости за секунду: так, если скорость машины меняется за секунду с 30 м/с на 20 м/с, ее ускорение равно – 10 м/с² (потеря скорости составляет 10 м/с каждую секунду).

А как обстоит с центростремительным ускорением? Как можно его измерить, если скорость машины не меняется? В этом случае необходимо значение, указывающее на «размер изменения направления».

Предположим, что за одну секунду вектор скорости меняется с v>→;>1 на v>→;>2, меняя только направление (см. схему справа). Мы видим, что стрелка вектора описала дугу, длина которой и составляет величину ускорения (математика очень точно нам это демонстрирует). Чем длиннее стрелки и больше угол между векторами, тем длиннее будет дуга.

Таким образом, центростремительное ускорение равно скорости, помноженной на изменение угла за единицу времени.

Испытание силы…

Действие окружающей среды

Снова возьмем наш объект, движущийся в инерциальной системе отсчета. Предположим, что это космический корабль, затерянный в безвоздушном межзвездном пространстве: то есть он является изолированным объектом, а его траектория равномерная и прямолинейная. А теперь представим, что он приближается к какой-то планете: его траектория искажается, несмотря на то что он не взаимодействует с планетой.