к валу), во сколько раз ON (радиус вала) меньше ОМ (радиуса колеса). Но радиус вала всегда в несколько раз меньше радиуса колеса; следовательно, на колесо приходится действовать с силою в несколько раз меньшею, чем вес полного ведра. Отсюда ясна выгода ворота. Если, например, радиус колеса 60 см, а радиус вала 1>1/>2 см, то ведро с водой весом 12 кг можно уравновесить силою х, которая определяется из пропорции:


х: 12 = 7 >1/>2: 60,


откуда


Существуют вороты, приспособленные не для поднятия грузов, а для волочения; такой ворот называется шпилем, или кабестаном. Здесь вал – стоячий, а не лежачий, а вместо колеса имеются длинные шесты – «водила», которыми вращают вал. Нетрудно сообразить, что сила, с какой приходится напирать на конец водила, во столько раз меньше сопротивления груза (его трения об опору), во сколько раз радиус вала меньше длины водила.

Пусть, например, нужно передвигать груз, требующий без шпиля усилия в 500 кг; имеется шпиль с валом радиуса 21 см и с водилами длиною 3 >1/>2 м. Тогда усилие х, которое нужно приложить к концу водил, чтобы тащить груз, найдем из пропорции:


х: 500 = 21: 350,


откуда

Золотое правило механики

На вороте или на шпиле можно, значит, небольшою силою привести в движение значительный груз. Но скорость этого движения в таких случаях бывает невелика, – меньше, чем скорость, с какою движется приложенная к вороту сила.

Рассмотрим последний пример со шпилем: при одном полном обороте конец шеста, где приложена сила, описывает путь длиною


2 × 3,14 × 350 = 2200 см.


Тем временем вал сделает также один оборот, намотав на себя кусок веревки, длиною


2 × 3,14 × 21 = 130 см.


Следовательно, груз подтянется всего на 130 см. Сила прошла 2 200 см, а груз за то же время – только 130 см, т. е. почти в 17 раз меньше. Если сравните величину груза (500 кг) с величиною усилия, прилагаемого к шпилю (30 кг), то убедитесь, что между ними существует такое же отношение:


500: 30 = около 17.


Вы видите, что путь груза во столько же раз меньше пути силы, во сколько раз эта сила меньше груза. Другими словами: во сколько раз выигрывается в силе, во столько же раз теряется в скорости.


Рис. 17. Объяснение золотого правила механики


Это правило применимо не только к вороту или шпилю, но и к рычагу, и ко всякой вообще машине (его издавна называют «золотым правилом механики»).

Рассмотрим, например, рычаг, о котором говорилось на с. 51. Здесь выигрывается в силе в 3 раза, но зато, пока длинное плечо рычага (см. рис. 17) описывает своим концом большую дугу MN, конец короткого плеча описывает втрое меньшую дугу ОР. Следовательно, и в этом случае путь, проходимый грузом, меньше пути, проходимого в то же время силою, в 3 раза – во столько же раз, во сколько эта сила меньше груза.

Теперь вам станет понятно, почему в некоторых случаях выгодно пользоваться рычагами наоборот: действуя большою силой на короткое плечо, чтобы двигать маленький груз на конце длинного плеча. Какая выгода так поступать? Ведь мы теряем здесь в силе! Конечно, зато во столько же раз выигрываем в скорости. И когда нам необходима большая скорость, мы приобретаем ее этой ценой. Такие рычаги представляют кости наших рук (рис. 18): в них мускул прикреплен к короткому плечу рычага 2-го рода и приводит в быстрое движение кисть руки.


Рис. 18. Наша рука – рычаг. Какого рода?


В данном случае потеря силы вознаграждается выигрышем скорости. Мы были бы крайне медлительными существами, если бы кости нашего скелета были устроены как рычаги, выигрывающие в силе и, значит, теряющие в скорости.

Машины Архимеда

Учение о рычаге разработано было впервые древнегреческим математиком Архимедом, жившим в Сиракузах (Сицилия) за двести лет до нашей эры. Легенды, в которых, вероятно, кроется большая доля истины, повествуют о замечательных машинах, которые были придуманы им на основе рычага. Вот что рассказывает об этом древний историк Плутарх: