Космос! Долой динамику!
В общем-то, на этом и приближается к концу вся динамика. Остаётся кусочек, который снова заносит в космос. А именно – космические скорости. Сложно сказать, почему их запихнули в динамику. Может быть потому, что каждая из этих скоростей означает рубеж, при котором преодолеваешь силу чьего-нибудь притяжения. А может быть потому, что космос – это тоже такая инерциальная система отсчёта, где космический корабль бороздит просторы Вселенной в гордом одиночестве, никто ему не мешает, он никуда не поворачивает, не тормозит и так далее.
Так вот, первый «рубеж», при котором такое возможно, – это если вывести корабль на орбиту Земли так, чтобы он стал спутником Земли (то бишь так, чтобы он не летел дальше, а «остановился» где-то недалеко от планеты). В итоге сила притяжения Земли вместе с космической «атмосферой» (которой почти нет – значит, ничего не должно мешать движению) заставят его крутиться вокруг нашей планетки. Соответственно, чтобы какой-то предмет смог так летать вокруг, надо ему дать такую скорость, чтобы он преодолел земное притяжение ровно настолько, чтобы оно же «остановило» его ровнёхонько на орбите планеты. Для особо любопытных: я специально пишу «остановиться» в кавычках: оказавшись на орбите, спутник не останавливается, а продолжает лететь. Но летит он с постоянной скоростью всё время в одну и ту же сторону – и с одной стороны, не может улететь дальше (мешает ещё действующее притяжение Земли), а с другой стороны, не может упасть (скорость достаточно большая, чтобы ещё преодолевать это притяжение). А главная её фишка в том, что для всех предметов она одинаковая! Более того, её даже можно посчитать, используя всего лишь второй закон Ньютона, немного кинематики и собственные мозги.
Чтобы понять, как можно посчитать первую космическую скорость, достаточно представить, как будет выглядеть весь запуск: со страшной скоростью подопытное туловище стартует с поверхности. В полёте гравитация и воздух тщетно пытаются его затормозить. Наконец, на орбите он должен «остановиться». Ничего не напоминает? Правильно – это будет замедленное движение. Чтобы совсем не заморачиваться на тему подсчётов – равнозамедленное. Расстояние, на которое летит туловище: радиус Земли. Ускорение, противостоящее нам: g. Расстояние, пройденное при торможении, будет равно: v>2.t (как было в кинематике). А нам отсюда нужна скорость. Итого: это будет корень квадратный из произведения g на радиус Земли. Поскольку и то, и другое – числа известные и постоянные, то и скорость будет для всех одинаковая. Если посчитать, то первая космическая скорость получится примерно 7.9 км/с. Вторая космическая скорость – летим ещё дальше, её хватит на то, чтобы вообще преодолеть притяжение Земли и улететь бороздить просторы Солнечной системы. Для Земли она составляет 11.2 км/с. Считается она уже из закона, которым наверняка уже прожужжали все уши, – из закона сохранения энергии. (О нём – ближе к концу механики, сейчас пока не грузимся.) Третья космическая скорость позволяет ухнуть ещё дальше – вылететь вообще за пределы Солнечной системы, то есть преодолеть притяжение Солнца. Она может меняться, потому что космический корабль должен будет уворачиваться от вертящихся планет и тому подобных посторонних предметов, пролетающих мимо в космосе. В среднем она составляет где-то около 42 км/с, но вообще может быть от 16.6 до почти 73 км/с. Наконец, есть ещё четвёртая космическая скорость. Она нужна тогда, когда захочется вышибить наш предмет с Земли настолько сильно, чтобы он преодолел притяжение самой нашей галактики Млечный путь. (Если фантазия разыграется до таких вселенских масштабов…) Её подсчёты ведут уже в какие-то заумные дебри современной физики; говорят, что она непостоянна и зависит от положения тела в галактике. Известно только, что в районе Солнечной системы нужно разогнаться аж до 550 км/с, чтобы иметь хоть какую-то надежду на полный улёт. Улёт в настолько открытый космос, что и представить трудно.