История исчезновения курчатовия и замещения его резерфордием связана с интереснейшей и во многом загадочной областью физики – синтезом тяжелых ядер. Именно синтез ядер замешан в истории с химическим элементом номер 104.
Ядро любого химического элемента состоит из протонов и нейтронов. Протон и нейтрон почти одинаково тяжелые – масса нейтрона больше массы протона всего на 0,1378%. Самое легкое ядро у водорода (>1Н) – оно содержит всего один протон. Чем больше протонов и нейтронов в ядре, тем оно тяжелее. С нарастанием массы ядра растет и порядковый номер химического элемента в периодической системе (порядковый номер химического элемента равен числу протонов в его ядре). Следовательно, самые тяжелые ядра сконцентрированы в самом низу периодической таблицы химических элементов.
Тяжелое, а значит, крупное по размеру ядро может распасться на несколько мелких. Такой процесс называется реакцией распада. Если происходит наоборот – несколько более мелких ядер объединяются в одно более крупное, – это событие называется реакцией синтеза. Естественные реакции ядерного синтеза во Вселенной распространены очень широко. В процессе синтеза ядер гелия (>2Не) из ядер водорода насыщаются выделяемой при синтезе энергией видимые нам звезды. Первую искусственную реакцию термоядерного синтеза человек использовал для создания водородной бомбы, но не сумел пока найти способ направить термоядерный синтез в мирное русло и научиться получать с его помощью энергию для жизни.
Единственный мирный вариант искусственного синтеза новых ядер в мирных целях доступен физикам, работающим на ускорителях тяжелых ионов. В таких экспериментах обычно получают считанные количества новых ядер – до нескольких десятков. И нужно проявить большое искусство и сообразительность, чтобы с помощью приборов достоверно узнать, что за ядра получились при синтезе. Причем важно не только узнать ядра «в лицо», но и убедительно доказать, что «лицо» опознано верно. К тому же распознать продукт синтеза нужно необычайно быстро, поскольку он почти всегда не жилец – тут же начинает делиться, испуская нейтроны, электроны или альфа-частицы и распадаясь на другие элементы – долгоживущие.
В Советском Союзе исследования ядер тяжелых ионов инициировал Игорь Васильевич Курчатов в Институте атомной энергии, в Москве. Ими занялась группа физиков под руководством Георгия Николаевича Флерова.
В 50-е годы XX века физики стали ускорять тяжелые ионы (ядра углерода, азота и кислорода) на циклотроне диаметром в полтора метра, сталкивать их с неподвижными мишенями и исследовать происходящие при этом ядерные реакции. Это были первые попытки синтеза трансурановых элементов – химическим элементов, которые тяжелее урана.
Впоследствии синтез сверхтяжелых химических элементов продолжился в международном ядерно-физическом центре в Дубне – в Объединенном институте ядерных исследований (ОИЯИ). В составе ОИЯИ специально для изучения сверхтяжелых элементов учредили целый научный институт под названием Лаборатория ядерных реакций (ЛЯР ОИЯИ). Естественно, ее директором стал академик Георгий Николаевич Флеров.
В 1959 году там создали самый мощный на тот момент в мире 310-сантиметровый циклотрон тяжелых ионов. А ныне в Лаборатории ядерных реакций им. Г. Н. Флерова Объединенного института ядерных исследований функционируют три уникальных ускорителя тяжелых ионов У-400, У-400М и DC-280, последний из которых запущен в 2018 году на единственной в мире Фабрике сверхтяжелых элементов.
Фабрика сверхтяжелых элементов построена в ЛЯР ОИЯИ специально для синтеза сверхтяжелых элементов на основе новых технологий высокопоточного ускорительного комплекса DC-280. Всего за один месяц работы этого комплекса физики получают столько ядер сверхтяжелых элементов, сколько на других ускорителях они получали за год.