– 10>—35 – 10>—32 с после Большого Взрыва. Вселенная преимущественно заполнена излучением, но уже начинают образовываться кварки, электроны и нейтрино.
– 10>—32 – 10>—12 с после Большого Взрыва. Температура Вселенной всё ещё очень высока. Поэтому электромагнитные взаимодействия и слабые взаимодействия пока представляют собой единое электрослабое взаимодействие. При очень высоких энергиях образуются экзотические частицы – W-бозон, Z-бозон и бозон Хиггса.
– 10>—12 – 10>—6 с после Большого Взрыва. Электромагнитное, гравитационное, сильное и слабое взаимодействия эволюционируют к их современному состоянию. Температуры и энергии все еще слишком велики, чтобы кварки группировались в адроны.
– 10>—6 – 1 с после Большого Взрыва. Кварк-глюонная плазма охлаждается, и кварки группируются в адроны, образуя протоны и нейтроны. Примерно через 1 с после Большого Взрыва нейтрино высвобождаются и начинают свободно двигаться в пространстве. Сегодня эти частицы ведут себя аналогично фоновому реликтовому излучению, которое возникло значительно позже них.
– 1 с – 3 мин после Большого Взрыва. Материя достаточно охладилась для образования стабильных протонов и нейтронов (нуклонов). Начался процесс первичного нуклеосинтеза (синтеза ядер). За это время образовался первичный состав звёздного вещества: около 25% гелия-4, 1% дейтерия, следы более тяжёлых элементов до бора и водород.
– 379 000 летпосле Большого Взрыва. Вселенная стала достаточно холодной (3000° К) для образования атомов. Из состояния плазмы материя перешла в газообразное состояние. Тепловое излучение той эпохи мы можем наблюдать в наше время в виде реликтового излучения. За счёт гравитационного притяжения вещество во Вселенной начинает распределяться по обособленным скоплениям (кластерам). Предполагается, что первыми плотными объектами в тёмной Вселенной были квазары. Затем начали образовываться ранние формы галактик и газопылевых туманностей. Появляются первые звёзды, в которых происходит синтез элементов тяжелее гелия.
– 8—9 миллиардов лет после Большого Взрыва. Начали образовываться структуры, соизмеримые по масштабу с нашей Солнечной системой. Звезда, которую мы называем Солнцем, появилась относительно поздно. Есть гипотеза, что часть массы Солнца включает в себя остатки более ранних звёзд.
Из всего этого явствует, что первые химические элементы во Вселенной появились между первой секундой и третьей минутой ее существования. Ими стали водород (Н) и гелий (Не) – самые легкие элементы в природе. Ядро стабильного водорода (водорода-1 или протия) содержит всего один протон и больше ничего. Есть у водорода два изотопа – водород-2 (дейтерий (D) от греч. Δεύτερον – второй) и водород-3 (тритий (T)). В ядре дейтерия, кроме протона, появляется еще один нейтрон. А в ядре трития вместе с одним протоном живут два нейтрона. Поэтому масса атома дейтерия больше массы атома протия или просто водорода, а тритий тяжелее дейтерия. Дейтерий называют тяжелым водородом, а тритий – сверхтяжелым водородом.
Итак, к протону добавили всего один нейтрон, получили новый изотоп водорода – почти его близнец. Но близнец оказался не вполне похожим на своего братца. Он так же стабилен, как и протий, в том смысле, что его ядро не стремится распадаться – протон и нейтрон мирно сосуществуют до бесконечности. Дейтерий, подобно водороду-1, образует воду, но с химической формулой не Н>2О, а D>2О – ее называют тяжелая вода. Тяжелая вода на вид и вкус ничем не отличается от обычной. И тем не менее, химические реакции в ее среде проходят несколько медленнее, чем в обычной воде, потому что водородные связи с участием дейтерия сильнее связей водорода-1, а потому их тяжелее разорвать. Тяжелая вода имеет большую вязкость, иную проводимость. Это приводит к тому, что попадая в организм человека, такая вода иначе участвует в процессах обмена веществ, чем обычная вода. Поэтому тяжёлая вода считается в слабой степени токсичной. Иногда ее даже называют мертвой водой. То есть протий и дейтерий – вовсе не близнецы, а скорее двойняшки.