Количество уровней или разрядность квантования характеризует точность передачи уровня звукового сигнала. Действительно, при 256 уровнях квантования или представлении уровня звука с помощью 8 бит информации, величина погрешности квантования равна половине расстояния между соседними уровнями, так как именно с этой точностью значение электрического напряжения может быть преобразовано в цифровой код (при том условии, что наименьшему уровню сигнала, обозначенному min на рис. 3.7, соответствует цифровой код 000000002 или 00h, а наибольшему, обозначенному max, – 111111112 или 0ffh в 16-ричной форме представления), т. е. отнесено к одному из двух соседних уровней, между которыми находится реальное значение сигнала.

Нетрудно сообразить, что при частоте дискретизации в 44100 Гц и квантовании каждого такого уровня 16 двоичными разрядами (65536 уровней квантования) хранение 1 минуты цифрового аудио потребует около 5 Мбайт информационного пространства, а 30 минут стереозвучания – около 300 Мбайт.

Закодированные описанным способом цифровые аудио-данные характеризуются значительной избыточностью, т. е. они могут быть упакованы, а затем восстановлены без всякой потери качества. Однако применение для сжатия цифрового аудио архиваторов обычного типа, таких как ARJ или ZIP позволяет сжать исходный файл лишь приблизительно на 20%, т. е. такое сжатие является неэффективным.

Основная идея сжатия аудиосигнала с потерями – пренебрежение теми фрагментами звука, которые лежат вне пределов восприятия человеческого уха. Первая такая возможность определяется маскирующим эффектом, в соответствии с которым сильные звуки приводят к невосприимчивости уха к слабым звукам в том же самом частотном диапазоне. Поэтому слабые звуки можно кодировать с малым количеством уровней, в результате чего сокращается количество информации, используемое при кодировании звука.

Далее, весь частотный диапазон делится на поддиапазоны, каждый из которых обрабатывается отдельно, причем маскирующий эффект используется как внутри каждого поддиапазона, так и между ними, т. е. очень мощный звук в одном из поддиапазонов приводит к маскированию во всех остальных. Затем используются особенности психоакустической модели человеческого слуха, в соответствии с которой тщательно сохраняются звуки хорошо воспринимаемых частот и удаляются звуки тех частот, которые не воспринимаются.

Для стереозвучания используется дополнительный прием, связанный с тем, что стереоэффект воспринимается человеком только в области средних звуковых частот. Поэтому сигнал низких и высоких частот передается в монофоническом звучании.

Наконец, используются специальные алгоритмы сжатия, основанные на высокой предсказуемости звукового сигнала, т. е. большом значении его коэффициента автокорреляции. Все перечисленные выше методы и алгоритмы позволяют получить десятикратный и более высокий коэффициент сжатия практически без потери качества звучания, что реализуется в формате MP3, разработанном комитетом MPEG (Motion Picture Expert Group – группа экспертов в области движущихся изображений).

Для воспроизведения звуковых файлов формата MP3 существует целая группа программ-плееров. Список большинства из них можно найти на сайте http://www.dailymp3.com. Самые популярные из них это Winamp, которая включена в дистрибутив браузера Netscape Communicator, начиная с версии 4.7, K-Jofol, которая является самым быстрым декодером звука, и NAD (или NADDY), которая является лидером по качеству воспроизведения звука. Другие плееры используются гораздо реже.

Из форматов звуковых файлов следует упомянуть AU (от слова Audio, предложен фирмой Sun Microsystems) для UNIX-подобных систем и платформ, WAV (Microsoft Waveform – стандарт звуковых файлов для операционной системы Windows), AIFF (Audio Interchange File Format – интерактивный формат аудио файлов) – стандарт звуковых файлов для платформы Apple Macintosh и MIDI (Musical Instrument Digital Interface – цифровой интерфейс для музыкальных инструментов) – межплатформный формат электронных музыкальных инструментов. Кратко остановимся на каждом из них.