Классификация подшипников качения осуществляется на основе следующих признаков:

– по виду тел качения: шариковые и роликовые. Последние, в свою очередь, подразделяются на следующие группы: с короткими и длинными цилиндрическими роликами; с витыми; с игольчатыми; с коническими и со сферическими роликами;

– по типу воспринимаемой нагрузки: радиальные, радиально-упорные, упорно-радиальные, упорные и линейные;

– по числу рядов тел качения: однорядные, двухрядные, многорядные;

– по способности компенсировать перекосы валов [4]: самоустанавливающиеся и несамоустанавливающиеся.

На рис. 1.2 приведены основные виды подшипников качения [2]:

а) радиально-упорный шариковый подшипник;

б) радиально-упорный шариковый подшипник с четырёхточечным контактом;

в) самоустанавливающийся двухрядный радиальный шариковый подшипник;

д) радиальный шариковый подшипник для корпусных узлов;

е) радиальный роликовый подшипник

ж) радиально-упорный (конический) роликовый подшипник;

з) самоустанавливающийся радиальный роликовый подшипник;

и) упорный роликовый подшипник;

к) самоустанавливающийся двухрядный радиальный роликовый подшипник с бочкообразными роликами (сферический);

л) упорный шариковый подшипник;

м) радиально-упорный роликовый подшипник;

н) ролики и сепаратор упорного игольчатого подшипника.

В табл. 1.1 приведено сравнение подшипников качения по эксплуатационным характеристикам [3].


Рис. 1.2. Внешний вид и конструкция основных типов подшипников качения


Продолжение рис. 1.2.


Табл. 1.1. Сравнение подшипников качения по эксплуатационным характеристикам: +++ – очень хорошо; ++ – хорошо; + – удовлетворительно; о – плохо; х – непригодно

1.3 Кинематические и силовые характеристики подшипнИков качения

Подшипник качения представляет собой по существу планетарный механизм, в котором водилом является сепаратор, функции центральных колес выполняют внешнее и внутреннее кольца, а тела качения заменяют сателлиты [2].

В соответствии с теоремой Виллиса:


где n, n и n – частоты вращения соответственно внутреннего кольца, внешнего кольца и сепаратора; D и D – диаметры окружностей расположения точек контактов тел качения соответственно на внешнем и внутреннем кольцах.


Учитывая, что



частоту вращения сепаратора можно определить по следующей формуле:


где α – угол контакта тел качения с дорожками качения колец подшипника (рис. 1.3); D>pw – диаметр окружности осей тел качения:


dw – диаметр тел качения; fg – геометрический параметр:



Рис. 1.3. Угол контакта роликоподшипника


Если неподвижно внутреннее кольцо подшипника (n=0), то за один оборот сепаратора наиболее нагруженная точка А на внутреннем кольце (рис. 1.4) получает число циклов нагружения, равное числу тел качения z. За один оборот внешнего кольца сепаратор делает 0,5 (1+f>g) оборота и число циклов нагружения точки А составляет



Следовательно, в течение L миллионов оборотов внешнего кольца число циклов повторных нагружений точки А составляет



При неподвижном внешнем кольце (n=0) частота вращения сепаратора будет равна



Рис. 1.4. Положение нагруженной точки А

на внутреннем кольце подшипника

при действии радиальной нагрузки F>r на подшипник


Сепаратор вращается в ту же сторону, что и внутреннее кольцо, и за один оборот внутреннего кольца сепаратор поворачивается на 0,5 (1+f>g) оборота. При этом точка А получает



циклов нагружения. В течение L миллионов оборотов внутреннего кольца число циклов повторных нагружений точки А будет равно



Из приведенных выше соотношений следует, что частота вращения сепаратора зависит от диаметра D>w при неизменном диаметре D>pw: частота возрастает при уменьшении