На данный момент в США насчитывается 460 ТЭЦ на базе МСЗ41 мощностью от 1,5 до 715 МВт. Структура установленной мощности этих станций следующая:
• станции мощностью до 5 МВт – 156
• станции мощностью от 5 до 25 МВт – 148
• станции мощностью свыше 25 МВт – 156
с разбивкой по установленной мощности, как показано на Рисунке 11. При этом в США насчитывается 21 станция мощностью более 100 МВт.
Рисунок 11. Структура установленной мощности станций на базе МСЗ в США
Источник:http://globalenergyobservatory.org/
Ситуация со строительством и эксплуатацией электростанций на основе МСЗ в европейских странах – различная. Лидер – Дания, которая сжигает свой мусор уже примерно 150 лет (Рисунок 12).
Рисунок 12. Утилизация мусора в европейских странах
Источник: по данным Eurostat2010 и CEWEP
В странах Европы по данным на 2012 год насчитывалось 452 ТЭЦ на базе МСЗ42. Лидерами по количеству таких станций в Европе являются: Франция, Германия, Италия, Швеция и Дания. Европейские страны планируют и далее наращивать объёмы производства энергии на станциях на основе МСЗ, доведя её объёмы к 2020 г. до 134 млрд кВт•ч.
Доля между объёмами тепла и электроэнергии на этих станциях в сумме распределяется, примерно, как 2:1. Поэтому такое значение имеет политика государств по отношению к развитию генерации на ТЭЦ наряду с политикой в сфере сбора и утилизации мусора. Утилизация мусора в т.ч. путём его частичного сжигания предполагает наличие нескольких источников выручки (компенсации затрат):
• плата жителей за сбор и утилизацию мусора домохозяйств,
• плата за приём мусора от собирающих компаний на ТЭЦ МСЗ,
• стоимость проданной электроэнергии,
• стоимость проданного тепла,
• выручка от продажи и (или) повторного использования вторичного сырья из ТБО.
Выводом из этого перечня является необходимость довольно «тонкой» настройки всей этой системы тарифов и цен.
БИОГАЗ
Ситуация с использованием имеющегося потенциала биогаза в Европе подобна ситуации с биомассой, но в меньшем масштабе, что можно увидеть на Рисунке 13.
Развитие технологии с использованием биогаза значительно зависит от схем стимулирования не только на национальном уровне, но и на уровне регионов и отдельных муниципалитетов, т.к. часто генерация на основе этой технологии – местная, небольшая, являющаяся частью сугубо муниципальной энергетики и теплоснабжения. Эта ситуация стала источником дополнительных трудностей для анализа, и в ней не просто разобраться.
Две страны ЕС-28 с самым высоким уровнем развития использования биогаза в настоящее время – это Германия и Великобритания, и в обоих случаях свалочный газ является доминирующей технологией, стимулируемой при помощи дополнительных схем на муниципальном уровне. Эта ситуация может объяснить отличие от соответствующего развития технологии в Испании: в последнем случае испанское правительство обеспечило в самом начале определённые низкие фиксированные тарифы, не ставшие достаточным стимулом для необходимого технологического развития. А, например, в Польше сейчас нет ни одной свалки, которая не была бы занята под производство свалочного газа, после того, как в стране была принята адекватная система поддержки, все свалки «разобрали». Для многих стран отсутствие детальной информации об опыте поддержки на местном и национальном уровне не позволяет оценить реализуемые стратегии.
Остановимся на биогазе, получаем на свалках, так называемом, свалочном газе. Свалочный газ – конечный продукт микробиологического разложения определённых фракций отходов, захороненных на мусорном полигоне. К ним относятся: растительные и животные остатки, бумага и древесина. Скорости, с которой эти материалы подвергаются биоконверсии, а также выход свалочного газа, существенно различны и зависят, в первую очередь от вида отходов (т.н. «морфологии» отходов), а также от физико-химических условий в теле свалки (влажность, температура, кислотность, доступ воздуха и т.д.). Проблема утилизации свалочного газа стоит достаточно остро, ввиду того, что метан, составляющий от 40 до 70% единицы объёма свалочного газа (остальные составляющие СГ – СО