Интегральный метод применяется в мультипликативных, кратных и смешанных моделях с использованием для каждой из них определенных формул.

1. Для двухфакторных мультипликативных моделей.

Пример: ТП = К х Ц.

Расчет изменения выручки за счет:

• количества проданной продукции (ΔТП):

ΔТП =1/2К х (Ц>пл + Ц);

• цены реализации (ΔТП):

ΔТП =1/2Ц х (К>пл + К).

2. Для кратной двухфакторной модели: А = В/С.

ΔА>общ = А – А>пл;



Способ логарифмирования применяется для измерения влияния факторов в мультипликативных моделях. При логарифмировании используются не абсолютные приросты результативных показателей, а индексы их роста или снижения. Общий прирост результативного показателя распределяется по факторам пропорционально отношениям логарифмов факторных индексов к логарифму индекса результативного показателя.

Способ пропорционального деления используется для аддитивных и кратно-аддитивных моделей.

Алгоритм расчета количественного влияния исследуемого фактора на изменение результативного показателя для аддитивной модели:

• абсолютное изменение результативного показателя делится на сумму абсолютных изменений всех факторов;

• полученный результат умножается на абсолютное отклонение исследуемого фактора.

Пример: Y = х>1 + х>2 +  х>3.

Изменение Yза счет фактора х>1:

ΔYх>1 = ΔY>общ /(Δх>1 + Δх>2 + Δх>3) × Δх>1.

Изменение Y за счет фактора х>2:

ΔYх>2 = ΔY>общ /(Δх>1 + Δх>2 + Δх>3) × Δх>2.

Изменение Y за счет факторах,

ΔYх>3 = ΔY>общ /(Δх>1 + Δх>2 + Δх>3) × Δх>3.

Сумма влияния факторов должна быть равна общему изменению результативного показателя.

Метод корреляционно-регрессионного анализа позволяет определить изменение результативного показателя под воздействием одного или нескольких факторов, т. е. определить, на сколько единиц изменяется величина результативного показателя при изменение факторного на единицу, а также позволяет установить относительную степень зависимости результативного показателя от каждого фактора. Корреляционная зависимость проявляется лишь в среднем (как среднее значение) и только в массе наблюдений.

Множественная корреляционная модель имеет вид:


y = а>0 + а>1х>1 + а>2х>2 + а>3х>3 + … + а>nх>n,

где у – результативный показатель; a>Q – свободный член уравнения; а>1,2,3 и т.д.  аргументы, показывающие, на сколько изменится результат при увеличении соответствующему ему х на единицу; x>1,2,3 и т. д. – факторы, воздействующие на результативный показатель.

Многофакторный корреляционный анализ состоит из нескольких этапов.

На первом этапе определяются факторы, которые оказывают влияние на изучаемый показатель, и отбираются наиболее существенные для корреляционного анализа.

На втором этапе собирается и оценивается исходная информация, необходимая для корреляционного анализа.

На третьем этапе изучается характер и моделируется связь между факторами и результативным показателем, т. е. подбирается и обосновывается математическое уравнение, которое наиболее точно выражает сущность исследуемой зависимости.

На четвертом, этапе проводится расчет основных показателей связи корреляционного анализа.

На пятом этапе статистически оцениваются результаты корреляционного анализа и практическое их применение.

В последние годы наибольшую актуальность в практической деятельности приобрел такой метод изучения многомерных статистических совокупностей, как кластерный анализ, содержание которого было впервые раскрыто в 1939 г. исследователем Трионом.

Сущность кластерного анализа заключается в разбиении множества изучаемых объектов и признаков на однородные группы или кластеры. Достоинство данного метода в том, что он позволяет подразделять объекты не по одному параметру, а по целому ряду признаков и в отличие от большинства математико-статистических методов не накладывает никаких ограничений на рассматриваемые объекты.