Воздушные шары могли не только делать достаточно точные прогнозы на основе прошлых полетов, но и анализировать новые данные прямо в воздухе, корректируя с их учетом свежие прогнозы.
Компания Alphabet завершила эксперимент в начале 2021 года, однако использование гауссовских процессов имеет большие перспективы. Стартап Secondmind разработал продукт Decision Engine, основанный на вероятностном моделировании с помощью гауссовских процессов. С помощью этой платформы японский автоконцерн Mazda смог улучшить настройку двигателя, используя в тысячу раз меньше данных, чем требуется обычным современным системам[29].
Некоторые эксперты считают, что использование гауссовских процессов для работы с небольшими объемами данных может ускорить создание автономного искусственного интеллекта. «Чтобы создать действительно независимое средство, нужно научить его очень быстро адаптироваться к меняющимся внешним условиям, – говорит Вишал Чатрат, генеральный директор стартапа Secondmind, занимающегося искусственным интеллектом. – То есть обучаться, эффективно используя данные»[30].
Гауссовские процессы не требуют огромного количества данных для распознавания закономерностей. Вычисления, необходимые для выводов и обучения, относительно просты, а если что-то пойдет не так, причину этого можно будет отследить, чего не скажешь о черных ящиках нейросетей.
Искусственный интеллект хорошо умеет выявлять взаимосвязи и делать на их основе ценные прогнозы. Например, компания GNS Healthcare из Кембриджа, занимающаяся точной (персонализированной) медициной, использует алгоритмы причинно-следственных связей, чтобы помочь крупнейшим фармацевтическим компаниям мира понять не только кто именно из пациентов реагирует на те или иные препараты, но и почему.
Используя байесовские методы, их программная платформа переводит данные в каузальные (причинные) модели. Это позволяет определить, какие переменные в наборе данных оказывают максимальное влияние на другие переменные, улучшить качество проверки лекарственных препаратов, ускорить их апробацию и лучше спрогнозировать риски для пациентов.
В одном из исследований компания GNS совместно с Альянсом клинических испытаний в онкологии поставила задачу определить предикторы (прогностические параметры) для группы пациентов с метастатическим колоректальным раком (мКРР)[31]. Это один из самых распространенных видов рака в США: ежегодно диагностируется около 140 000 новых случаев.
В исследовании использовалась платформа на основе ИИ, учитывающего причинно-следственные связи; с ее помощью был проведен анализ клинических данных более чем 2000 пациентов с мКРР. Исследователи хотели выявить биомаркеры пациентов на разные лекарственные препараты и предикторы общей выживаемости среди определенных подгрупп пациентов.
«Мы никогда не были в лучшем положении, чтобы разгадать движущие силы заболевания и реакции пациентов на конкретные препараты, – говорит Колин Хилл, председатель совета директоров, генеральный директор и соучредитель GNS. – Мы создали компьютерную модель пациента с колоректальным раком и смогли обнаружить биомаркеры, показывающие, какие пациенты будут реагировать на то или иное лечение и, самое главное, почему. Именно это приведет нас к созданию персонализированной медицины и позволит искоренить болезнь»[32].
Ежедневно на YouTube загружается около 720 000 часов[33] видео, которое необходимо обработать для рекламных рейтингов и выдачи в рекомендациях пользователям. В медицинских учреждениях терабайты видеозаписей должны использоваться только на локальных устройствах, чтобы не нарушать конфиденциальность пациентов. В «умных» городах огромный объем записи камер видеонаблюдения иногда надо проанализировать очень быстро, чтобы предотвратить угрозу потенциально опасных или преступных действий.